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Summary/plan

1 General question of interest: determine which smooth
projective varieties X are rational: is X birational to Pn

k? (or
stably rational, or retract rational...)

2 Methods:
X is rational: come up with a geometric construction;
X is not rational:

find invariants of X ;
find invariants of a (maybe singular) specialization X0 of X .

3 this motivates: what is the available pool of X0 with
invariants?

4 goal: add to the pool X0 → P2
C with fibers cubic surfaces:

invariants: use Galois cohomology and geometry of cubics;
example:
X : xz2u3 + y2zv3 + xy2w3 + ft3 = 0 ⊂ P2

[x :y :z] × P3
[u:v :w :t]

f = x3 + y3 + z3 + 3x2y + 3xy2 + 3y2z + 3yz2 + 3xz2 + 3x2z .
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INTRODUCTION



Properties of rationality

k a field, X/k projective integral variety

X is rational: X is birational to Pn
k ⇔ k(X )/k is a purely

transcendental extension;
X is stably rational: X × Pm

k is rational, for some m;
X is unirational: there is a dominant rational map Pn

k 99K X ;

We have implications ⇓.
All notions are equivalent for X/C smooth, of dimension 1
(X ' P1

C) or 2 (birational class of P2
C).

Next: typical examples and counterexamples.
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Rationality proofs

Notation:

Xd ⊂ Pn
k : f (x0, . . . xn) = 0, deg f = d a smooth hypersurface.

smooth quadrics X2 with X2(k) 6= ∅ are rational:

Rational parametrization:
nontangent lines through A ↔ second intersection point with
the quadric.
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Irrationality proofs over C: classical

Classical methods:
compute some invariant i(X );
i(X ) 6= 0⇒ X is not rational.

Examples of not rational smooth threefolds:
1 X3 ⊂ P4

C (Clemens-Griffiths, using intermediate Jacobian);
2 X4 ⊂ P4

C (Iskovskikh-Manin, using rigidity);
3 Z a resolution of

Y : z2
4 − f4(x0, x1, x2, x3) = 0

a double cover of P3
C ramified along some quartic

(Artin-Mumford, H3(Z ,Z)tors = Br Z 6= 0).
These varieties provide examples of unirational not rational complex
threefolds.
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Irrationality proofs over C: specialization

(Beauville, Voisin, Colliot-Thélène–Pirutka, Totaro, Schreieder):
consider a family of varieties:

X

��

X0

��

oo reference varietyoo

B 0oo

compute a suitable invariant i(X0);

i(X0) 6= 0 + EPSILON ⇒ a very general X = Xb is not
(stably) rational;
(in some cases, all previously computable i(X ) vanish);
Xb very general: b /∈ ∪i∈NBi (C), Bi ⊂ B closed.
EPSILON:

restriction on singularities of X0;
"restriction to subvarieties" for i (Schreieder).
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X not stably rational by specialization

1 dimXd = 3: (Colliot-Thélène–Pirutka), d = 4;

2 dimXd = 4: (Totaro) d = 4, (Kollár) d = 5;
3 dimXd = 5; (Nicaise-Ottem) d = 4, (Schreieder) d = 5,

(Kollár) d = 6;
4 (Schreieder) Xd ⊂ Pn+1 with

d ≥ log2n + 2,

this generalizes previous bounds by Kollár, and Totaro, of order
d ∼≥ 2/3n.

Other examples:
cyclic covers,
complete intersections,
hypersurfaces in Pm × Pn, and more.
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Available reference varieties X0

X0 : a conic of quadric surface bundle over P2,

i = Br(X ′0)[2] = H2
nr (X0,Z/2) ⊂ H2(C(X0),Z/2)

here X ′0 → X0 is a resolution of singularities.

X0 : cyclic cover of Pn, i = H0(X ′0,Ω
m)

more generally, X0 : a quadric bundle over Pn,

i = Hm
nr (X0) ⊂ Hm(C(X0));

X0 : a fibration over Pn in Fermat-Pfister forms, i = Hm
nr (X0).
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Galois cohomology



H i(K ,Z/2) and residues

Assume: K ⊃ µn.
1 H0(K ,Z/n) ' Z/n;

H1(K ,Z/n) ' K∗/K∗n (Kummer),
for a ∈ K∗, we will still denote by a its class in H1(K ,Z/n).
Br(K )[n] = H2(K ,Z/n) (Kummer);
symbols: (a, b) := a ∪ b ∈ H2(K ,Z/n), a, b ∈ K∗.

2 v : K → Z ∪∞ a discrete valuation of rank 1:
Recall: v(x) =∞⇔ x = 0
v(xy) = v(x) + v(y)
v(x + y) ≥ min(v(x), v(y))
A be the valuation ring: A = {x , v(x) ≥ 0},
κ(v) the residue field: κ(v) = A/m,
m = {x , v(x) > 0} = (πA), πA is a uniformizer
this gives ∂ iv : H i (K ,Z/n)→ H i−1(κ(v),Z/n).
∂ iv factors through the completion H i (Kv ,Z/n)
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Formulas for residus

a, b ∈ H1(K ,Z/n) ' K ∗/K ∗n

1 ∂1
v (a) = v(a) mod n ∈ H0(κ(v),Z/n) ' Z/n,

2

∂2
v (a, b) = (−1)v(a)v(b) a

v(b)

bv(a)

where av(b)

bv(a) is the image of the unit av(b)

bv(a) in κ(v)∗/κ(v)∗n.
3 In particular, ∂2

v (a, b) = 0 if v(a) = v(b) = 0.
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Example

S = P2
C, K = C(x , y), α = (x , y) ∈ H2(K ,Z/2);

vD : K ∗ → Z is the order of vanishing at D = {x = 0};

recall: ∂2
v (a, b) = (−1)v(a)v(b) av(b)

bv(a) ;

then ∂2
vD

(α) = ∂2
vD

(x , y) =

y ∈ C(y)∗/C(y)∗2.
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H i
nr : definition

X/k an integral variety, then

H2
nr (X ) = H2

nr (k(X )/k) = ∩vKer∂2
v

where the intersection is over all discrete valuations v on k(X )
(of rank one), trivial on the field k .

One has
H2(k)→ H2

nr (k(X )/k)

(recall: if v(a) = v(b) = 0, then ∂(a, b) = 0.
Birational invariant by definition (Saltman, Bogomolov,
Colliot-Thélène-Ojanguren).
X/k is a stably rational, then H i (k) ' H i

nr (k(X )/k).
Advantage: No need to compute a smooth model of X
Fact: if X is smooth and projective, H2

nr (X ,Z/n) ' Br(X )[n].
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Strategy for fibrations (Colliot-Thélène - Ojanguren)

Set up:
XK

//

��

X

π
��

fibration in geometrically rational varietiesoo

K // S = P2
C

where K = C(x , y) is the field of functions of S ,

note: K (XK ) = C(X ).

H2
nr (C(X )/C) �

� // H2
nr (K (XK )/K ) �

� // H2(C(X ))

H2(K )

OO

α ∈ H2(K ) is ramified on S as H2
nr (C(S)/C) = H2(C) = 0.

idea: if ∂2
vD

(α) 6= 0, then π degenerates along D.
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Relative unramified cohomology H i
nr ,π(k(X )/k) ⊂ H i(k(X ))

Set up: XKx

��

XK
//
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π

��

integraloo

Kx K //? _oo S/k smooth, k alg.closedoo

here K (XK ) = k(X ).

Definition

H i
nr ,π(k(X )/k) = Im[H i (K )→ H i (K (XK ))]

⋂
∩P Ker[H i (K )→ H i (KP)→ H i (KP(XKP

))],

where
P runs over all scheme points of S of positive codimension:
P ∈ S (i) for i > 0
KP is the field of fractions of the completed local ring ÔS,P .
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Properties

H i
nr ,π(k(X )/k) ⊂ H i

nr (k(X )/k).

if α ∈ H i
nr ,π(k(X )/k) nonzero, then X is a reference variety

(Schreieder).
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Cubic surface bundles



Computing H2
nr ,π

H2
nr ,π(k(X )/k) = Im[H2(K )→ H2(K (XK ))]

⋂
∩P Ker[H2(K )→ H2(KP)→ H2(KP(XKP

))].

Let Y = XK .

Question: when H2(F )→ H2(F (Y )) is:
injective (F = K )
not injective, and what is the kernel (F = KP)?

Known answers for:
Y a quadric (Arason, Pfister, Kahn-Rost-Sujatha)
Y a geometrically rational surface (Colliot-Thélène - Karpenko
- Merkurjev).
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Rational surfaces and kernels for H2(·,Z/3)

(Colliot-Thélène - Karpenko - Merkurjev)
F a field, Y /F geometrically rational surface. Then

Ker[H2(F ,Z/3)→ H2(F (Y ),Z/3)] 6= 0 iff
Y is F -birational to Y ′ a non-split Severi-Brauer (SB) surface.

Then

Ker[H2(F ,Z/3)→ H2(F (Y ),Z/3)] ' Z/3,

generated by the class of Y ′.
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Example: minimal cubic

Y : au3 + bv3 + abw3 + ft3 = 0, a, b, f ∈ F

Assume: none of the elements a, b, ab, f , af , bf is a cube in F .
(Segre) then the surface is minimal, and

H2(F ,Z/3Z)→ H2(F (Y ),Z/3Z)

is injective.



Example: nonminimal cubic

Y : au3 + bv3 + abw3 + t3 = 0, a, b ∈ F

then (a, b) ∈ Ker[H2(F ,Z/3)→ H2(F (Y ),Z/3)]:

if a is a cube in F (Y ), then (a, b) = 0.
Otherwise, let L = F (Y )( 3

√
a). In F (Y ) we have a relation

b = − t3 + au3

v3 + aw3 ,

so
b = NL/F (Y )(β)

where

β = − t + 3
√
au

v + 3
√
aw

.

Hence in H2(F (Y ),Z/3Z):

(a, b) = (a,NL/F (Y )(β)) = NL/F (Y )(a, β) = 0.
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Example

k = C
(or k an algebraically closed field of char (k) 6= 3)
X ⊂ P2

[x :y :z] × P3
[u:v :w :t] is a cubic surface bundle over k :

xz2u3 + y2zv3 + xy2w3 + ft3 = 0,

where

f = x3 + y3 + z3 + 3x2y + 3xy2 + 3y2z + 3yz2 + 3xz2 + 3x2z ,

Let K = C(P2) = C(x/z , y/z), let
α = (x/z , y/z) ∈ H2(K ,Z/3). Then

α ∈ H2
nr ,π(C(X )/C,Z/3).
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Sketch of proof: α nonzero in C (X ) = K (XK )

the generic fibre Y = XK of π is a minimal cubic surface:

xz2u3 + y2zv3 + xy2w3 + ft3 = 0,

where
f = x3 + y3 + z3 + 3x2y + 3xy2 + 3y2z + 3yz2 + 3xz2 + 3x2z .

Recall:
au3 + bv3 + abw3 + ft3 = 0, a, b, f ∈ K

if none of the elements a, b, ab, f , af , bf is a cube then
H2(K ,Z/3)→ H2(K (Y ),Z/3) is injective.
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Sketch of proof: ramification of α

xz2u3 + y2zv3 + xy2w3 + ft3 = 0, α = (x/z , y/z).

Question: For which divisors D ⊂ P2
C one has ∂D(α) 6= 0?

Answer: x = 0 or y = 0 or z = 0.
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Sketch of proof: α zero in KP(Y )

xz2u3 + y2zv3 + xy2w3 + ft3 = 0, α = (x/z , y/z).

Let P ∈ P2
k be a point of positive codimension. We have three

cases:

1 P is the generic point of one of three lines x = 0, y = 0, or
z = 0, or an intersection point of two of these lines.

2 P is a closed point lying on only one of the lines x = 0, y = 0,
or z = 0.

3 All other cases.
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Blackboard



Sketch of proof: α zero in KP(Y ), case 1

xz2u3 + y2zv3 + xy2w3 + ft3 = 0, α = (x/z , y/z), where
f = x3 + y3 + z3 + 3x2y + 3xy2 + 3y2z + 3yz2 + 3xz2 + 3x2z .

P is the generic point of one of three lines x = 0, y = 0, or z = 0,
or an intersection point of two of these lines.

Then
f is a nonzero cube in κ(P), so that f is a cube in KP (Hensel)
YKP

is
x

z
u3 +

y2

z2 v
3 +

x

z

y2

z2w
3 + t3 = 0

so that the element (x/z , y2/z2) = 2α is in the kernel of the
map

H2(KP ,Z/3)→ H2(KP(Y ),Z/3Z).
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Sketch of proof: α zero in KP(Y ), case 2

xz2u3 + y2zv3 + xy2w3 + ft3 = 0, α = (x/z , y/z).

P is a closed point lying on only one of the lines x = 0, y = 0, or
z = 0.

enough: α = 0 over KP .
assume: P is on the line x = 0:
then y/z is a nonzero element in the residue field κ(P) = C,
hence a cube
Hence y/z is a cube in KP .
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Sketch of proof: α zero in KP(Y ), case 3

xz2u3 + y2zv3 + xy2w3 + ft3 = 0, α = (x/z , y/z).

P is not on the lines x = 0, y = 0, or z = 0.
x/z and y/z are units in the local ring of P , so that the image
of α in KP comes from the cohomology group
H2
ét(ÔP2,P ,Z/3).

H2
ét(ÔP2,P ,Z/3) = H2(κ(P),Z/3) = 0 by cohomological

dimension.



Sketch of proof: α zero in KP(Y ), case 3

xz2u3 + y2zv3 + xy2w3 + ft3 = 0, α = (x/z , y/z).

P is not on the lines x = 0, y = 0, or z = 0.
x/z and y/z are units in the local ring of P , so that the image
of α in KP comes from the cohomology group
H2
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Corollary

We obtained:

xz2u3 + y2zv3 + xy2w3 + ft3 = 0 ⊂ P2
[x :y :z] × P3

[u:v :w :t]

where

f = x3 + y3 + z3 + 3x2y + 3xy2 + 3y2z + 3yz2 + 3xz2 + 3x2z

is a reference variety.

Then:

Theorem (Krylov-Okada, Nicaise-Ottem)

Let k be an algebraically closed field of char (k) 6= 3. A very general
hypersurface of bidegree (3, 3) in P2

k × P3
k is not stably rational.
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General formula

π : X → S = P2
C cubic surface bundle, K = C(x , y).

H2
nr ,π(C(X )/C,Z/3) = Im[H2(K ,Z/3)→ H2(K (XK ),Z/3)]

⋂
∩P∈S(1)∪S(2) Ker[H2(K )→ H2(KP)→ H2(KP(XKP

))],

α ∈ H2(K ) is determined by residues at P ∈ S of codimension
1, by Bloch-Ogus:

0→ H2(K ,Z/3)
⊕∂2
→ ⊕P∈S(1)H1(κ(P),Z/3)→

⊕∂1
→ ⊕p∈S(2)H0(κ(p),Z/3)

we need to specify which residues are allowed:
XKP

is birational to a SB surface ⇒ the fiber
XP = ∪3 conjugated planes (condition appeared in a joint
work with A. Auel and C. Böhning).



General formula

π : X → S = P2
C cubic surface bundle, K = C(x , y).

H2
nr ,π(C(X )/C,Z/3) = Im[H2(K ,Z/3)→ H2(K (XK ),Z/3)]

⋂
∩P∈S(1)∪S(2) Ker[H2(K )→ H2(KP)→ H2(KP(XKP

))],

α ∈ H2(K ) is determined by residues at P ∈ S of codimension
1, by Bloch-Ogus:

0→ H2(K ,Z/3)
⊕∂2
→ ⊕P∈S(1)H1(κ(P),Z/3)→

⊕∂1
→ ⊕p∈S(2)H0(κ(p),Z/3)

we need to specify which residues are allowed:

XKP
is birational to a SB surface ⇒ the fiber

XP = ∪3 conjugated planes (condition appeared in a joint
work with A. Auel and C. Böhning).



General formula

π : X → S = P2
C cubic surface bundle, K = C(x , y).

H2
nr ,π(C(X )/C,Z/3) = Im[H2(K ,Z/3)→ H2(K (XK ),Z/3)]

⋂
∩P∈S(1)∪S(2) Ker[H2(K )→ H2(KP)→ H2(KP(XKP

))],

α ∈ H2(K ) is determined by residues at P ∈ S of codimension
1, by Bloch-Ogus:

0→ H2(K ,Z/3)
⊕∂2
→ ⊕P∈S(1)H1(κ(P),Z/3)→

⊕∂1
→ ⊕p∈S(2)H0(κ(p),Z/3)

we need to specify which residues are allowed:
XKP

is birational to a SB surface ⇒ the fiber
XP = ∪3 conjugated planes

(condition appeared in a joint
work with A. Auel and C. Böhning).



General formula

π : X → S = P2
C cubic surface bundle, K = C(x , y).

H2
nr ,π(C(X )/C,Z/3) = Im[H2(K ,Z/3)→ H2(K (XK ),Z/3)]

⋂
∩P∈S(1)∪S(2) Ker[H2(K )→ H2(KP)→ H2(KP(XKP

))],

α ∈ H2(K ) is determined by residues at P ∈ S of codimension
1, by Bloch-Ogus:

0→ H2(K ,Z/3)
⊕∂2
→ ⊕P∈S(1)H1(κ(P),Z/3)→

⊕∂1
→ ⊕p∈S(2)H0(κ(p),Z/3)

we need to specify which residues are allowed:
XKP

is birational to a SB surface ⇒ the fiber
XP = ∪3 conjugated planes (condition appeared in a joint
work with A. Auel and C. Böhning).



General formula

Set up: π : X → S = P2
C cubic surface bundle, K = C(x , y).

Assume:
XK is a smooth minimal cubic surface
(so H2(K ,Z/3) ↪→ H2(K (XK ),Z/3));
fibres of π over codimension 1 points of S are reduced.

Determine:
C = ∪ni=1Ci ⊂ S a divisor corresponding to the set of
codimension 1 points of S over which the fibre of π is
geometrically a union of three planes permuted by Galois.
γi ∈ κ(Ci )

∗/(κ(Ci )
∗)3 the class corresponding to the cyclic

extension.
Assume C is snc. Then (briefly):

α ∈ H2
nr ,π is only allowed to have residues γi at Ci + condition

on KP .
glue by Bloch-Ogus.
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∗)3 the class corresponding to the cyclic

extension.
Assume C is snc. Then (briefly):

α ∈ H2
nr ,π is only allowed to have residues γi at Ci + condition

on KP .
glue by Bloch-Ogus.



General formula

Set up: π : X → S = P2
C, C = ∪ni=1Ci , γi ∈ κ(Ci )

∗/(κ(Ci )
∗)3.

H2
nr ,π(C(X )/C,Z/3) = Im[H2(K ,Z/3)→ H2(K (XK ),Z/3)]

⋂
∩P∈S(1)∪S(2) Ker[H2(K )→ H2(KP)→ H2(KP(XKP

))],

Then

H2
nr ,π(C(X )/C,Z/3) = {a = {ai}ni=1, ai ∈ {−1, 0, 1}} ⊂ (Z/3)n

(i) ai 6= 0⇒ XKCi
is birational to SB;

(ii) (Bloch-Ogus)
n∑

i=1

∑
P∈S(2)

∂P(γaii ) = 0

(iii) if P ∈ Ci ∩ Cj and if ∂P(γaii ) = −∂P(γ
aj
j ) 6= 0, one has that

the base change XKP
is birational to SB.
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The end

THANK YOU!!!


