On cubic surface bundles

Alena Pirutka

Courant Institute, New York University

April 19, 2024
Birational Geometry Seminar
Online seminar

Summary/plan

(1) General question of interest: determine which smooth projective varieties X are rational: is X birational to \mathbb{P}_{k}^{n} ? (or stably rational, or retract rational...)

Summary/plan

(1) General question of interest: determine which smooth projective varieties X are rational: is X birational to \mathbb{P}_{k}^{n} ? (or stably rational, or retract rational...)
(2) Methods:

- X is rational: come up with a geometric construction;

Summary/plan

(1) General question of interest: determine which smooth projective varieties X are rational: is X birational to \mathbb{P}_{k}^{n} ? (or stably rational, or retract rational...)
(2) Methods:

- X is rational: come up with a geometric construction;
- X is not rational:
- find invariants of X;
- find invariants of a (maybe singular) specialization X_{0} of X.

Summary/plan

(1) General question of interest: determine which smooth projective varieties X are rational: is X birational to \mathbb{P}_{k}^{n} ? (or stably rational, or retract rational...)
(2) Methods:

- X is rational: come up with a geometric construction;
- X is not rational:
- find invariants of X;
- find invariants of a (maybe singular) specialization X_{0} of X.
(3) this motivates: what is the available pool of X_{0} with invariants?

Summary/plan

(1) General question of interest: determine which smooth projective varieties X are rational: is X birational to \mathbb{P}_{k}^{n} ? (or stably rational, or retract rational...)
(2) Methods:

- X is rational: come up with a geometric construction;
- X is not rational:
- find invariants of X;
- find invariants of a (maybe singular) specialization X_{0} of X.
(3) this motivates: what is the available pool of X_{0} with invariants?
(9) goal: add to the pool $X_{0} \rightarrow \mathbb{P}_{\mathbb{C}}^{2}$ with fibers cubic surfaces:

Summary/plan

(1) General question of interest: determine which smooth projective varieties X are rational: is X birational to \mathbb{P}_{k}^{n} ? (or stably rational, or retract rational...)
(2) Methods:

- X is rational: come up with a geometric construction;
- X is not rational:
- find invariants of X;
- find invariants of a (maybe singular) specialization X_{0} of X.
(3) this motivates: what is the available pool of X_{0} with invariants?
(9) goal: add to the pool $X_{0} \rightarrow \mathbb{P}_{\mathbb{C}}^{2}$ with fibers cubic surfaces:
- invariants: use Galois cohomology and geometry of cubics;

Summary/plan

(1) General question of interest: determine which smooth projective varieties X are rational: is X birational to \mathbb{P}_{k}^{n} ? (or stably rational, or retract rational...)
(2) Methods:

- X is rational: come up with a geometric construction;
- X is not rational:
- find invariants of X;
- find invariants of a (maybe singular) specialization X_{0} of X.
(3) this motivates: what is the available pool of X_{0} with invariants?
(9) goal: add to the pool $X_{0} \rightarrow \mathbb{P}_{\mathbb{C}}^{2}$ with fibers cubic surfaces:
- invariants: use Galois cohomology and geometry of cubics;
- example:

$$
\begin{aligned}
& X: x z^{2} u^{3}+y^{2} z v^{3}+x y^{2} w^{3}+f t^{3}=0 \subset \mathbb{P}_{[x: y: z]}^{2} \times \mathbb{P}_{[u: v: w: t]}^{3} \\
& f=x^{3}+y^{3}+z^{3}+3 x^{2} y+3 x y^{2}+3 y^{2} z+3 y z^{2}+3 x z^{2}+3 x^{2} z
\end{aligned}
$$

INTRODUCTION

Properties of rationality

k a field, X / k projective integral variety

- X is rational: X is birational to $\mathbb{P}_{k}^{n} \Leftrightarrow k(X) / k$ is a purely transcendental extension;
- X is stably rational: $X \times \mathbb{P}_{k}^{m}$ is rational, for some m;
- X is unirational: there is a dominant rational map $\mathbb{P}_{k}^{n} \rightarrow X$;

Properties of rationality

k a field, X / k projective integral variety

- X is rational: X is birational to $\mathbb{P}_{k}^{n} \Leftrightarrow k(X) / k$ is a purely transcendental extension;
- X is stably rational: $X \times \mathbb{P}_{k}^{m}$ is rational, for some m;
- X is unirational: there is a dominant rational map $\mathbb{P}_{k}^{n} \rightarrow X$;

We have implications \Downarrow.
All notions are equivalent for X / \mathbb{C} smooth, of dimension 1 $\left(X \simeq \mathbb{P}_{\mathbb{C}}^{1}\right)$ or 2 (birational class of $\left.\mathbb{P}_{\mathbb{C}}^{2}\right)$.
Next: typical examples and counterexamples.

Rationality proofs

Notation:
$X_{d} \subset \mathbb{P}_{k}^{n}: f\left(x_{0}, \ldots x_{n}\right)=0, \operatorname{deg} f=d$ a smooth hypersurface.

Rationality proofs

Notation:

$$
X_{d} \subset \mathbb{P}_{k}^{n}: f\left(x_{0}, \ldots x_{n}\right)=0, \operatorname{deg} f=d \text { a smooth hypersurface. }
$$

- smooth quadrics X_{2} with $X_{2}(k) \neq \emptyset$ are rational:

Rational parametrization:
nontangent lines through $A \leftrightarrow$ second intersection point with the quadric.

Irrationality proofs over \mathbb{C} : classical

Classical methods:

- compute some invariant $i(X)$;
- $i(X) \neq 0 \Rightarrow X$ is not rational.

Irrationality proofs over \mathbb{C} : classical

Classical methods:

- compute some invariant $i(X)$;
- $i(X) \neq 0 \Rightarrow X$ is not rational.

Examples of not rational smooth threefolds:
(1) $X_{3} \subset \mathbb{P}_{\mathbb{C}}^{4}$ (Clemens-Griffiths, using intermediate Jacobian);
(2) $X_{4} \subset \mathbb{P}_{\mathbb{C}}^{4}$ (Iskovskikh-Manin, using rigidity);
(3) Z a resolution of

$$
Y: z_{4}^{2}-f_{4}\left(x_{0}, x_{1}, x_{2}, x_{3}\right)=0
$$

a double cover of $\mathbb{P}_{\mathbb{C}}^{3}$ ramified along some quartic (Artin-Mumford, $H^{3}(Z, \mathbb{Z})_{\text {tors }}=\operatorname{Br} Z \neq 0$).
These varieties provide examples of unirational not rational complex threefolds.

Irrationality proofs over \mathbb{C} : specialization

(Beauville, Voisin, Colliot-Thélène-Pirutka, Totaro, Schreieder):

- consider a family of varieties:

- compute a suitable invariant $i\left(X_{0}\right)$;

Irrationality proofs over \mathbb{C} : specialization

(Beauville, Voisin, Colliot-Thélène-Pirutka, Totaro, Schreieder):

- consider a family of varieties:

- compute a suitable invariant $i\left(X_{0}\right)$;
- $i\left(X_{0}\right) \neq 0+$ EPSILON \Rightarrow a very general $X=\mathcal{X}_{b}$ is not (stably) rational;
- (in some cases, all previously computable $i(X)$ vanish);

Irrationality proofs over \mathbb{C} : specialization

(Beauville, Voisin, Colliot-Thélène-Pirutka, Totaro, Schreieder):

- consider a family of varieties:

- compute a suitable invariant $i\left(X_{0}\right)$;
- $i\left(X_{0}\right) \neq 0+$ EPSILON \Rightarrow a very general $X=\mathcal{X}_{b}$ is not (stably) rational;
- (in some cases, all previously computable $i(X)$ vanish);
- \mathcal{X}_{b} very general: $b \notin \cup_{i \in \mathbb{N}} B_{i}(\mathbb{C}), B_{i} \subset B$ closed.
- EPSILON:
- restriction on singularities of X_{0};
- "restriction to subvarieties" for i (Schreieder).

X not stably rational by specialization

(1) $\operatorname{dim} X_{d}=$ 3: (Colliot-Thélène-Pirutka), $d=4$;

X not stably rational by specialization

(1) $\operatorname{dim} X_{d}=$ 3: (Colliot-Thélène-Pirutka), $d=4$;
(2) $\operatorname{dim} X_{d}=4$: (Totaro) $d=4$, (Kollár) $d=5$;

X not stably rational by specialization

(1) $\operatorname{dim} X_{d}=3$: (Colliot-Thélène-Pirutka), $d=4$;
(2) $\operatorname{dim} X_{d}=4$: (Totaro) $d=4$, (Kollár) $d=5$;
(3) $\operatorname{dim} X_{d}=5$; (Nicaise-Ottem) $d=4$, (Schreieder) $d=5$, (Kollár) $d=6$;

X not stably rational by specialization

(1) $\operatorname{dim} X_{d}=3$: (Colliot-Thélène-Pirutka), $d=4$;
(2) $\operatorname{dim} X_{d}=4$: (Totaro) $d=4$, (Kollár) $d=5$;
(3) $\operatorname{dim} X_{d}=5$; (Nicaise-Ottem) $d=4$, (Schreieder) $d=5$, (Kollár) $d=6$;
(9) (Schreieder) $X_{d} \subset \mathbb{P}^{n+1}$ with

$$
d \geq \log _{2} n+2
$$

this generalizes previous bounds by Kollár, and Totaro, of order $d \sim \geq 2 / 3 n$.

X not stably rational by specialization

(1) $\operatorname{dim} X_{d}=3$: (Colliot-Thélène-Pirutka), $d=4$;
(2) $\operatorname{dim} X_{d}=4$: (Totaro) $d=4$, (Kollár) $d=5$;
(3) $\operatorname{dim} X_{d}=5 ;($ Nicaise-Ottem) $d=4$, (Schreieder) $d=5$, (Kollár) $d=6$;
(9) (Schreieder) $X_{d} \subset \mathbb{P}^{n+1}$ with

$$
d \geq \log _{2} n+2
$$

this generalizes previous bounds by Kollár, and Totaro, of order $d \sim \geq 2 / 3 n$.

Other examples:

- cyclic covers,
- complete intersections,
- hypersurfaces in $\mathbb{P}^{m} \times \mathbb{P}^{n}$, and more.

Available reference varieties X_{0}

- X_{0} : a conic of quadric surface bundle over \mathbb{P}^{2},

$$
i=\operatorname{Br}\left(X_{0}^{\prime}\right)[2]=H_{n r}^{2}\left(X_{0}, \mathbb{Z} / 2\right) \subset H^{2}\left(\mathbb{C}\left(X_{0}\right), \mathbb{Z} / 2\right)
$$

here $X_{0}^{\prime} \rightarrow X_{0}$ is a resolution of singularities.

Available reference varieties X_{0}

- X_{0} : a conic of quadric surface bundle over \mathbb{P}^{2},

$$
i=\operatorname{Br}\left(X_{0}^{\prime}\right)[2]=H_{n r}^{2}\left(X_{0}, \mathbb{Z} / 2\right) \subset H^{2}\left(\mathbb{C}\left(X_{0}\right), \mathbb{Z} / 2\right)
$$

here $X_{0}^{\prime} \rightarrow X_{0}$ is a resolution of singularities.

- X_{0} : cyclic cover of $\mathbb{P}^{n}, i=H^{0}\left(X_{0}^{\prime}, \Omega^{m}\right)$

Available reference varieties X_{0}

- X_{0} : a conic of quadric surface bundle over \mathbb{P}^{2},

$$
i=\operatorname{Br}\left(X_{0}^{\prime}\right)[2]=H_{n r}^{2}\left(X_{0}, \mathbb{Z} / 2\right) \subset H^{2}\left(\mathbb{C}\left(X_{0}\right), \mathbb{Z} / 2\right)
$$

here $X_{0}^{\prime} \rightarrow X_{0}$ is a resolution of singularities.

- X_{0} : cyclic cover of $\mathbb{P}^{n}, i=H^{0}\left(X_{0}^{\prime}, \Omega^{m}\right)$
- more generally, X_{0} : a quadric bundle over \mathbb{P}^{n},

$$
i=H_{n r}^{m}\left(X_{0}\right) \subset H^{m}\left(\mathbb{C}\left(X_{0}\right)\right) ;
$$

Available reference varieties X_{0}

- X_{0} : a conic of quadric surface bundle over \mathbb{P}^{2},

$$
i=\operatorname{Br}\left(X_{0}^{\prime}\right)[2]=H_{n r}^{2}\left(X_{0}, \mathbb{Z} / 2\right) \subset H^{2}\left(\mathbb{C}\left(X_{0}\right), \mathbb{Z} / 2\right)
$$

here $X_{0}^{\prime} \rightarrow X_{0}$ is a resolution of singularities.

- X_{0} : cyclic cover of $\mathbb{P}^{n}, i=H^{0}\left(X_{0}^{\prime}, \Omega^{m}\right)$
- more generally, X_{0} : a quadric bundle over \mathbb{P}^{n},

$$
i=H_{n r}^{m}\left(X_{0}\right) \subset H^{m}\left(\mathbb{C}\left(X_{0}\right)\right) ;
$$

- X_{0} : a fibration over \mathbb{P}^{n} in Fermat-Pfister forms, $i=H_{n r}^{m}\left(X_{0}\right)$.

Galois cohomology

$H^{i}(K, \mathbb{Z} / 2)$ and residues

Assume: $K \supset \mu_{n}$.
(1) $H^{0}(K, \mathbb{Z} / n) \simeq \mathbb{Z} / n$;

- $H^{1}(K, \mathbb{Z} / n) \simeq K^{*} / K^{* n}$ (Kummer), for $a \in K^{*}$, we will still denote by a its class in $H^{1}(K, \mathbb{Z} / n)$.
- $\operatorname{Br}(K)[n]=H^{2}(K, \mathbb{Z} / n)$ (Kummer); symbols: $(a, b):=a \cup b \in H^{2}(K, \mathbb{Z} / n), a, b \in K^{*}$.

$H^{i}(K, \mathbb{Z} / 2)$ and residues

Assume: $K \supset \mu_{n}$.
(1) $H^{0}(K, \mathbb{Z} / n) \simeq \mathbb{Z} / n$;

- $H^{1}(K, \mathbb{Z} / n) \simeq K^{*} / K^{* n}$ (Kummer),
for $a \in K^{*}$, we will still denote by a its class in $H^{1}(K, \mathbb{Z} / n)$.
- $\operatorname{Br}(K)[n]=H^{2}(K, \mathbb{Z} / n)$ (Kummer);
symbols: $(a, b):=a \cup b \in H^{2}(K, \mathbb{Z} / n), a, b \in K^{*}$.
(2) $-v: K \rightarrow \mathbb{Z} \cup \infty$ a discrete valuation of rank 1 :

Recall: $v(x)=\infty \Leftrightarrow x=0$
$v(x y)=v(x)+v(y)$
$v(x+y) \geq \min (v(x), v(y))$

- A be the valuation ring: $A=\{x, v(x) \geq 0\}$,
- $\kappa(v)$ the residue field: $\kappa(v)=A / m$, $m=\{x, v(x)>0\}=\left(\pi_{A}\right), \pi_{A}$ is a uniformizer

$H^{i}(K, \mathbb{Z} / 2)$ and residues

Assume: $K \supset \mu_{n}$.
(1) $H^{0}(K, \mathbb{Z} / n) \simeq \mathbb{Z} / n$;

- $H^{1}(K, \mathbb{Z} / n) \simeq K^{*} / K^{* n}$ (Kummer),
for $a \in K^{*}$, we will still denote by a its class in $H^{1}(K, \mathbb{Z} / n)$.
- $\operatorname{Br}(K)[n]=H^{2}(K, \mathbb{Z} / n)$ (Kummer);
symbols: $(a, b):=a \cup b \in H^{2}(K, \mathbb{Z} / n), a, b \in K^{*}$.
(2) $-v: K \rightarrow \mathbb{Z} \cup \infty$ a discrete valuation of rank 1 :

Recall: $v(x)=\infty \Leftrightarrow x=0$
$v(x y)=v(x)+v(y)$
$v(x+y) \geq \min (v(x), v(y))$

- A be the valuation ring: $A=\{x, v(x) \geq 0\}$,
- $\kappa(v)$ the residue field: $\kappa(v)=A / m$, $m=\{x, v(x)>0\}=\left(\pi_{A}\right), \pi_{A}$ is a uniformizer
- this gives $\partial_{v}^{i}: H^{i}(K, \mathbb{Z} / n) \rightarrow H^{i-1}(\kappa(v), \mathbb{Z} / n)$.
- ∂_{v}^{i} factors through the completion $H^{i}\left(K_{v}, \mathbb{Z} / n\right)$

Formulas for residus

$$
\begin{aligned}
& a, b \in H^{1}(K, \mathbb{Z} / n) \simeq K^{*} / K^{* n} \\
& \text { (1) } \partial_{v}^{1}(a)=v(a) \bmod n \in H^{0}(\kappa(v), \mathbb{Z} / n) \simeq \mathbb{Z} / n,
\end{aligned}
$$

Formulas for residus

$a, b \in H^{1}(K, \mathbb{Z} / n) \simeq K^{*} / K^{* n}$
(1) $\partial_{v}^{1}(a)=v(a) \bmod n \in H^{0}(\kappa(v), \mathbb{Z} / n) \simeq \mathbb{Z} / n$,
(2)

$$
\partial_{v}^{2}(a, b)=(-1)^{v(a) v(b)} \frac{\overline{a^{v(b)}}}{b^{v(a)}}
$$

where $\overline{\frac{a^{v}(b)}{b^{v(a)}}}$ is the image of the unit $\frac{a^{v}(b)}{b^{v(a)}}$ in $\kappa(v)^{*} / \kappa(v)^{* n}$.

Formulas for residus

$a, b \in H^{1}(K, \mathbb{Z} / n) \simeq K^{*} / K^{* n}$
(1) $\partial_{v}^{1}(a)=v(a) \bmod n \in H^{0}(\kappa(v), \mathbb{Z} / n) \simeq \mathbb{Z} / n$,
(2)

$$
\partial_{v}^{2}(a, b)=(-1)^{v(a) v(b)} \frac{\overline{a^{v(b)}}}{b^{v(a)}}
$$

where $\overline{\frac{a^{v}(b)}{b^{v(a)}}}$ is the image of the unit $\frac{a^{v^{(b)}}}{b^{v(a)}}$ in $\kappa(v)^{*} / \kappa(v)^{* n}$.
(3) In particular, $\partial_{v}^{2}(a, b)=0$ if $v(a)=v(b)=0$.

Example

- $S=\mathbb{P}_{\mathbb{C}}^{2}, K=\mathbb{C}(x, y), \alpha=(x, y) \in H^{2}(K, \mathbb{Z} / 2)$;
- $v_{D}: K^{*} \rightarrow \mathbb{Z}$ is the order of vanishing at $D=\{x=0\}$;
- recall: $\partial_{v}^{2}(a, b)=(-1)^{v(a) v(b)} \frac{\overline{a^{v}(b)}}{b^{v(a)}}$;
- then $\partial_{v_{D}}^{2}(\alpha)=\partial_{v_{D}}^{2}(x, y)=$

Example

- $S=\mathbb{P}_{\mathbb{C}}^{2}, K=\mathbb{C}(x, y), \alpha=(x, y) \in H^{2}(K, \mathbb{Z} / 2)$;
- $v_{D}: K^{*} \rightarrow \mathbb{Z}$ is the order of vanishing at $D=\{x=0\}$;
- recall: $\partial_{v}^{2}(a, b)=(-1)^{v(a) v(b)} \frac{\overline{a^{v}(b)}}{b^{v(a)}}$;
- then $\partial_{v_{D}}^{2}(\alpha)=\partial_{v_{D}}^{2}(x, y)=y \in \mathbb{C}(y)^{*} / \mathbb{C}(y)^{* 2}$.

$H_{n r}^{i}$: definition

- X / k an integral variety, then

$$
H_{n r}^{2}(X)=H_{n r}^{2}(k(X) / k)=\cap_{v} \operatorname{Ker} \partial_{v}^{2}
$$

where the intersection is over all discrete valuations v on $k(X)$ (of rank one), trivial on the field k.

$H_{n r}^{i}$: definition

- X / k an integral variety, then

$$
H_{n r}^{2}(X)=H_{n r}^{2}(k(X) / k)=\cap_{v} \operatorname{Ker} \partial_{v}^{2}
$$

where the intersection is over all discrete valuations v on $k(X)$ (of rank one), trivial on the field k.

- One has

$$
H^{2}(k) \rightarrow H_{n r}^{2}(k(X) / k)
$$

(recall: if $v(a)=v(b)=0$, then $\partial(a, b)=0$.

$H_{n r}^{i}$: definition

- X / k an integral variety, then

$$
H_{n r}^{2}(X)=H_{n r}^{2}(k(X) / k)=\cap_{v} \operatorname{Ker} \partial_{v}^{2}
$$

where the intersection is over all discrete valuations v on $k(X)$ (of rank one), trivial on the field k.

- One has

$$
H^{2}(k) \rightarrow H_{n r}^{2}(k(X) / k)
$$

(recall: if $v(a)=v(b)=0$, then $\partial(a, b)=0$.

- Birational invariant by definition (Saltman, Bogomolov, Colliot-Thélène-Ojanguren).
- X / k is a stably rational, then $H^{i}(k) \simeq H_{n r}^{i}(k(X) / k)$.
- Advantage: No need to compute a smooth model of X

$H_{n r}^{i}$: definition

- X / k an integral variety, then

$$
H_{n r}^{2}(X)=H_{n r}^{2}(k(X) / k)=\cap_{v} \operatorname{Ker} \partial_{v}^{2}
$$

where the intersection is over all discrete valuations v on $k(X)$ (of rank one), trivial on the field k.

- One has

$$
H^{2}(k) \rightarrow H_{n r}^{2}(k(X) / k)
$$

(recall: if $v(a)=v(b)=0$, then $\partial(a, b)=0$.

- Birational invariant by definition (Saltman, Bogomolov, Colliot-Thélène-Ojanguren).
- X / k is a stably rational, then $H^{i}(k) \simeq H_{n r}^{i}(k(X) / k)$.
- Advantage: No need to compute a smooth model of X
- Fact: if X is smooth and projective, $H_{n r}^{2}(X, \mathbb{Z} / n) \simeq \operatorname{Br}(X)[n]$.

Strategy for fibrations (Colliot-Thélène - Ojanguren)

- Set up:

where $K=\mathbb{C}(x, y)$ is the field of functions of S,

Strategy for fibrations (Colliot-Thélène - Ojanguren)

- Set up:

where $K=\mathbb{C}(x, y)$ is the field of functions of S, note: $K\left(X_{K}\right)=\mathbb{C}(X)$.

Strategy for fibrations (Colliot-Thélène - Ojanguren)

- Set up:

where $K=\mathbb{C}(x, y)$ is the field of functions of S, note: $K\left(X_{K}\right)=\mathbb{C}(X)$.
- $H_{n r}^{2}(\mathbb{C}(X) / \mathbb{C}) \longleftrightarrow H_{n r}^{2}\left(K\left(X_{K}\right) / K\right) \longleftrightarrow H^{2}(\mathbb{C}(X))$

$$
H^{2}(K)
$$

Strategy for fibrations (Colliot-Thélène - Ojanguren)

- Set up:

where $K=\mathbb{C}(x, y)$ is the field of functions of S, note: $K\left(X_{K}\right)=\mathbb{C}(X)$.
- $H_{n r}^{2}(\mathbb{C}(X) / \mathbb{C}) \longleftrightarrow H_{n r}^{2}\left(K\left(X_{K}\right) / K\right) \longleftrightarrow H^{2}(\mathbb{C}(X))$

- $\alpha \in H^{2}(K)$ is ramified on S as $H_{n r}^{2}(\mathbb{C}(S) / \mathbb{C})=H^{2}(\mathbb{C})=0$.

Strategy for fibrations (Colliot-Thélène - Ojanguren)

- Set up:

where $K=\mathbb{C}(x, y)$ is the field of functions of S, note: $K\left(X_{K}\right)=\mathbb{C}(X)$.
- $H_{n r}^{2}(\mathbb{C}(X) / \mathbb{C}) \longleftrightarrow H_{n r}^{2}\left(K\left(X_{K}\right) / K\right) \longleftrightarrow H^{2}(\mathbb{C}(X))$

$$
H^{2}(K)
$$

- $\alpha \in H^{2}(K)$ is ramified on S as $H_{n r}^{2}(\mathbb{C}(S) / \mathbb{C})=H^{2}(\mathbb{C})=0$.
- idea: if $\partial_{v_{D}}^{2}(\alpha) \neq 0$, then π degenerates along D.

Relative unramified cohomology $H_{n r, \pi}^{i}(k(X) / k) \subset H^{i}(k(X))$

Set up: $X_{K_{x}}$
 here $K\left(X_{K}\right)=k(X)$.

Relative unramified cohomology $H_{n r, \pi}^{i}(k(X) / k) \subset H^{i}(k(X))$

Set up: $X_{K_{x}}$

$X_{K} \longrightarrow X \longleftarrow$ integral
$K_{x} \longleftarrow W \longrightarrow S / k \leftarrow$ smooth, k alg.closed here $K\left(X_{K}\right)=k(X)$.

Definition

$$
\begin{aligned}
H_{n r, \pi}^{i}(k(X) / k)= & \operatorname{Im}\left[H^{i}(K) \rightarrow H^{i}\left(K\left(X_{K}\right)\right)\right] \bigcap \\
& \cap_{P} \operatorname{Ker}\left[H^{i}(K) \rightarrow H^{i}\left(K_{P}\right) \rightarrow H^{i}\left(K_{P}\left(X_{K_{P}}\right)\right)\right],
\end{aligned}
$$

where

- P runs over all scheme points of S of positive codimension:

$$
P \in S^{(i)} \text { for } i>0
$$

- K_{P} is the field of fractions of the completed local ring $\widehat{O}_{S, P}$.

Properties

- $H_{n r, \pi}^{i}(k(X) / k) \subset H_{n r}^{i}(k(X) / k)$.

Properties

- $H_{n r, \pi}^{i}(k(X) / k) \subset H_{n r}^{i}(k(X) / k)$.
- if $\alpha \in H_{n r, \pi}^{i}(k(X) / k)$ nonzero, then X is a reference variety (Schreieder).

Cubic surface bundles

Computing $H_{n r, \pi}^{2}$

$$
\begin{aligned}
H_{n r, \pi}^{2}(k(X) / k)= & \operatorname{Im}\left[H^{2}(K) \rightarrow H^{2}\left(K\left(X_{K}\right)\right)\right] \cap \\
& \cap_{P} \operatorname{Ker}\left[H^{2}(K) \rightarrow H^{2}\left(K_{P}\right) \rightarrow H^{2}\left(K_{P}\left(X_{K_{P}}\right)\right)\right] .
\end{aligned}
$$

Let $Y=X_{K}$.

Computing $H_{n r, \pi}^{2}$

$$
\begin{aligned}
H_{n r, \pi}^{2}(k(X) / k)= & \operatorname{Im}\left[H^{2}(K) \rightarrow H^{2}\left(K\left(X_{K}\right)\right)\right] \bigcap \\
& \cap_{P} \operatorname{Ker}\left[H^{2}(K) \rightarrow H^{2}\left(K_{P}\right) \rightarrow H^{2}\left(K_{P}\left(X_{K_{P}}\right)\right)\right] .
\end{aligned}
$$

Let $Y=X_{K}$.
Question: when $H^{2}(F) \rightarrow H^{2}(F(Y))$ is:

- injective $(F=K)$
- not injective, and what is the kernel $\left(F=K_{P}\right)$?

Computing $H_{n r, \pi}^{2}$

$$
\begin{aligned}
H_{n r, \pi}^{2}(k(X) / k)= & \operatorname{Im}\left[H^{2}(K) \rightarrow H^{2}\left(K\left(X_{K}\right)\right)\right] \bigcap \\
& \cap_{P} \operatorname{Ker}\left[H^{2}(K) \rightarrow H^{2}\left(K_{P}\right) \rightarrow H^{2}\left(K_{P}\left(X_{K_{P}}\right)\right)\right] .
\end{aligned}
$$

Let $Y=X_{K}$.
Question: when $H^{2}(F) \rightarrow H^{2}(F(Y))$ is:

- injective $(F=K)$
- not injective, and what is the kernel $\left(F=K_{P}\right)$?

Known answers for:

- Y a quadric (Arason, Pfister, Kahn-Rost-Sujatha)
- Y a geometrically rational surface (Colliot-Thélène - Karpenko - Merkurjev).

Rational surfaces and kernels for $H^{2}(\cdot, \mathbb{Z} / 3)$

(Colliot-Thélène - Karpenko - Merkurjev)
F a field, Y / F geometrically rational surface. Then

- $\operatorname{Ker}\left[H^{2}(F, \mathbb{Z} / 3) \rightarrow H^{2}(F(Y), \mathbb{Z} / 3)\right] \neq 0 \mathrm{iff}$
- Y is F-birational to Y^{\prime} a non-split Severi-Brauer (SB) surface.

Rational surfaces and kernels for $H^{2}(\cdot, \mathbb{Z} / 3)$

(Colliot-Thélène - Karpenko - Merkurjev)
F a field, Y / F geometrically rational surface. Then

- $\operatorname{Ker}\left[H^{2}(F, \mathbb{Z} / 3) \rightarrow H^{2}(F(Y), \mathbb{Z} / 3)\right] \neq 0 \mathrm{iff}$
- Y is F-birational to Y^{\prime} a non-split Severi-Brauer (SB) surface. Then

$$
\operatorname{Ker}\left[H^{2}(F, \mathbb{Z} / 3) \rightarrow H^{2}(F(Y), \mathbb{Z} / 3)\right] \simeq \mathbb{Z} / 3
$$

generated by the class of Y^{\prime}.

Example: minimal cubic

$$
Y: a u^{3}+b v^{3}+a b w^{3}+f t^{3}=0, a, b, f \in F
$$

- Assume: none of the elements $a, b, a b, f, a f, b f$ is a cube in F.
- (Segre) then the surface is minimal, and

$$
H^{2}(F, \mathbb{Z} / 3 \mathbb{Z}) \rightarrow H^{2}(F(Y), \mathbb{Z} / 3 \mathbb{Z})
$$

is injective.

Example: nonminimal cubic

$$
\begin{aligned}
& Y: a u^{3}+b v^{3}+a b w^{3}+t^{3}=0, a, b \in F \\
& \text { then }(a, b) \in \operatorname{Ker}\left[H^{2}(F, \mathbb{Z} / 3) \rightarrow H^{2}(F(Y), \mathbb{Z} / 3)\right]:
\end{aligned}
$$

Example: nonminimal cubic

$$
Y: a u^{3}+b v^{3}+a b w^{3}+t^{3}=0, a, b \in F
$$

$$
\text { then }(a, b) \in \operatorname{Ker}\left[H^{2}(F, \mathbb{Z} / 3) \rightarrow H^{2}(F(Y), \mathbb{Z} / 3)\right]:
$$

- if a is a cube in $F(Y)$, then $(a, b)=0$.

Example: nonminimal cubic

$$
Y: a u^{3}+b v^{3}+a b w^{3}+t^{3}=0, a, b \in F
$$

then $(a, b) \in \operatorname{Ker}\left[H^{2}(F, \mathbb{Z} / 3) \rightarrow H^{2}(F(Y), \mathbb{Z} / 3)\right]$:

- if a is a cube in $F(Y)$, then $(a, b)=0$.
- Otherwise, let $L=F(Y)(\sqrt[3]{a})$. In $F(Y)$ we have a relation

$$
b=-\frac{t^{3}+a u^{3}}{v^{3}+a w^{3}}
$$

so

$$
b=N_{L / F(Y)}(\beta)
$$

where

$$
\beta=-\frac{t+\sqrt[3]{a} u}{v+\sqrt[3]{a} w}
$$

Example: nonminimal cubic

$$
Y: a u^{3}+b v^{3}+a b w^{3}+t^{3}=0, a, b \in F
$$

then $(a, b) \in \operatorname{Ker}\left[H^{2}(F, \mathbb{Z} / 3) \rightarrow H^{2}(F(Y), \mathbb{Z} / 3)\right]$:

- if a is a cube in $F(Y)$, then $(a, b)=0$.
- Otherwise, let $L=F(Y)(\sqrt[3]{a})$. In $F(Y)$ we have a relation

$$
b=-\frac{t^{3}+a u^{3}}{v^{3}+a w^{3}}
$$

so

$$
b=N_{L / F(Y)}(\beta)
$$

where

$$
\beta=-\frac{t+\sqrt[3]{a} u}{v+\sqrt[3]{a} w}
$$

- Hence in $H^{2}(F(Y), \mathbb{Z} / 3 \mathbb{Z})$:

$$
(a, b)=\left(a, N_{L / F(Y)}(\beta)\right)=N_{L / F(Y)}(a, \beta)=0 .
$$

Example

- $k=\mathbb{C}$
(or k an algebraically closed field of $\operatorname{char}(k) \neq 3$)
- $X \subset \mathbb{P}_{[x: y: z]}^{2} \times \mathbb{P}_{[u: v: w: t]}^{3}$ is a cubic surface bundle over k :

$$
x z^{2} u^{3}+y^{2} z v^{3}+x y^{2} w^{3}+f t^{3}=0,
$$

where
$f=x^{3}+y^{3}+z^{3}+3 x^{2} y+3 x y^{2}+3 y^{2} z+3 y z^{2}+3 x z^{2}+3 x^{2} z$,

Example

- $k=\mathbb{C}$
(or k an algebraically closed field of char $(k) \neq 3$)
- $X \subset \mathbb{P}_{[x: y: z]}^{2} \times \mathbb{P}_{[u: v: w: t]}^{3}$ is a cubic surface bundle over k :

$$
x z^{2} u^{3}+y^{2} z v^{3}+x y^{2} w^{3}+f t^{3}=0,
$$

where
$f=x^{3}+y^{3}+z^{3}+3 x^{2} y+3 x y^{2}+3 y^{2} z+3 y z^{2}+3 x z^{2}+3 x^{2} z$,

- Let $K=\mathbb{C}\left(\mathbb{P}^{2}\right)=\mathbb{C}(x / z, y / z)$, let

$$
\alpha=(x / z, y / z) \in H^{2}(K, \mathbb{Z} / 3) \text {. Then }
$$

$$
\alpha \in H_{n r, \pi}^{2}(\mathbb{C}(X) / \mathbb{C}, \mathbb{Z} / 3)
$$

Sketch of proof: α nonzero in $C(X)=K\left(X_{K}\right)$

the generic fibre $Y=X_{K}$ of π is a minimal cubic surface:

$$
x z^{2} u^{3}+y^{2} z v^{3}+x y^{2} w^{3}+f t^{3}=0,
$$

where
$f=x^{3}+y^{3}+z^{3}+3 x^{2} y+3 x y^{2}+3 y^{2} z+3 y z^{2}+3 x z^{2}+3 x^{2} z$.

Sketch of proof: α nonzero in $C(X)=K\left(X_{K}\right)$

the generic fibre $Y=X_{K}$ of π is a minimal cubic surface:

$$
x z^{2} u^{3}+y^{2} z v^{3}+x y^{2} w^{3}+f t^{3}=0,
$$

where
$f=x^{3}+y^{3}+z^{3}+3 x^{2} y+3 x y^{2}+3 y^{2} z+3 y z^{2}+3 x z^{2}+3 x^{2} z$.

Recall:

$$
a u^{3}+b v^{3}+a b w^{3}+f t^{3}=0, a, b, f \in K
$$

if none of the elements $a, b, a b, f, a f, b f$ is a cube then $H^{2}(K, \mathbb{Z} / 3) \rightarrow H^{2}(K(Y), \mathbb{Z} / 3)$ is injective.

Sketch of proof: ramification of α

$$
x z^{2} u^{3}+y^{2} z v^{3}+x y^{2} w^{3}+f t^{3}=0, \alpha=(x / z, y / z) .
$$

Sketch of proof: ramification of α

$$
x z^{2} u^{3}+y^{2} z v^{3}+x y^{2} w^{3}+f t^{3}=0, \alpha=(x / z, y / z)
$$

Question: For which divisors $D \subset \mathbb{P}_{\mathbb{C}}^{2}$ one has $\partial_{D}(\alpha) \neq 0$?

Sketch of proof: ramification of α

$$
x z^{2} u^{3}+y^{2} z v^{3}+x y^{2} w^{3}+f t^{3}=0, \alpha=(x / z, y / z)
$$

Question: For which divisors $D \subset \mathbb{P}_{\mathbb{C}}^{2}$ one has $\partial_{D}(\alpha) \neq 0$?

Answer: $x=0$ or $y=0$ or $z=0$.

Sketch of proof: α zero in $K_{P}(Y)$

$$
x z^{2} u^{3}+y^{2} z v^{3}+x y^{2} w^{3}+f t^{3}=0, \alpha=(x / z, y / z) .
$$

Sketch of proof: α zero in $K_{P}(Y)$

$$
x z^{2} u^{3}+y^{2} z v^{3}+x y^{2} w^{3}+f t^{3}=0, \alpha=(x / z, y / z) .
$$

Let $P \in \mathbb{P}_{k}^{2}$ be a point of positive codimension. We have three cases:
(1) P is the generic point of one of three lines $x=0, y=0$, or $z=0$, or an intersection point of two of these lines.
(2) P is a closed point lying on only one of the lines $x=0, y=0$, or $z=0$.
(3) All other cases.

Blackboard

Sketch of proof: α zero in $K_{P}(Y)$, case 1

$$
\begin{aligned}
& x z^{2} u^{3}+y^{2} z v^{3}+x y^{2} w^{3}+f t^{3}=0, \alpha=(x / z, y / z), \text { where } \\
& f=x^{3}+y^{3}+z^{3}+3 x^{2} y+3 x y^{2}+3 y^{2} z+3 y z^{2}+3 x z^{2}+3 x^{2} z
\end{aligned}
$$

P is the generic point of one of three lines $x=0, y=0$, or $z=0$, or an intersection point of two of these lines.

Sketch of proof: α zero in $K_{P}(Y)$, case 1

$$
\begin{aligned}
& x z^{2} u^{3}+y^{2} z v^{3}+x y^{2} w^{3}+f t^{3}=0, \alpha=(x / z, y / z), \text { where } \\
& f=x^{3}+y^{3}+z^{3}+3 x^{2} y+3 x y^{2}+3 y^{2} z+3 y z^{2}+3 x z^{2}+3 x^{2} z
\end{aligned}
$$

P is the generic point of one of three lines $x=0, y=0$, or $z=0$, or an intersection point of two of these lines.
Then

- f is a nonzero cube in $\kappa(P)$, so that f is a cube in K_{P} (Hensel)

Sketch of proof: α zero in $K_{P}(Y)$, case 1

$x z^{2} u^{3}+y^{2} z v^{3}+x y^{2} w^{3}+f t^{3}=0, \alpha=(x / z, y / z)$, where
$f=x^{3}+y^{3}+z^{3}+3 x^{2} y+3 x y^{2}+3 y^{2} z+3 y z^{2}+3 x z^{2}+3 x^{2} z$.
P is the generic point of one of three lines $x=0, y=0$, or $z=0$, or an intersection point of two of these lines.
Then

- f is a nonzero cube in $\kappa(P)$, so that f is a cube in K_{P} (Hensel)
- $Y_{K_{P}}$ is

$$
\frac{x}{z} u^{3}+\frac{y^{2}}{z^{2}} v^{3}+\frac{x}{z} \frac{y^{2}}{z^{2}} w^{3}+t^{3}=0
$$

so that the element $\left(x / z, y^{2} / z^{2}\right)=2 \alpha$ is in the kernel of the map

$$
H^{2}\left(K_{P}, \mathbb{Z} / 3\right) \rightarrow H^{2}\left(K_{P}(Y), \mathbb{Z} / 3 \mathbb{Z}\right) .
$$

Sketch of proof: α zero in $K_{P}(Y)$, case 2

$$
x z^{2} u^{3}+y^{2} z v^{3}+x y^{2} w^{3}+f t^{3}=0, \alpha=(x / z, y / z)
$$

P is a closed point lying on only one of the lines $x=0, y=0$, or $z=0$.

Sketch of proof: α zero in $K_{P}(Y)$, case 2

$$
x z^{2} u^{3}+y^{2} z v^{3}+x y^{2} w^{3}+f t^{3}=0, \alpha=(x / z, y / z)
$$

P is a closed point lying on only one of the lines $x=0, y=0$, or $z=0$.

- enough: $\alpha=0$ over K_{P}.

Sketch of proof: α zero in $K_{P}(Y)$, case 2

$$
x z^{2} u^{3}+y^{2} z v^{3}+x y^{2} w^{3}+f t^{3}=0, \alpha=(x / z, y / z)
$$

P is a closed point lying on only one of the lines $x=0, y=0$, or $z=0$.

- enough: $\alpha=0$ over K_{P}.
- assume: P is on the line $x=0$:
- then y / z is a nonzero element in the residue field $\kappa(P)=\mathbb{C}$, hence a cube
- Hence y / z is a cube in K_{P}.

Sketch of proof: α zero in $K_{P}(Y)$, case 3

$$
x z^{2} u^{3}+y^{2} z v^{3}+x y^{2} w^{3}+f t^{3}=0, \alpha=(x / z, y / z)
$$

P is not on the lines $x=0, y=0$, or $z=0$.

- x / z and y / z are units in the local ring of P, so that the image of α in K_{P} comes from the cohomology group $H_{e t t}^{2}\left(\widehat{\mathcal{O}}_{\mathbb{P}^{2}, P}, \mathbb{Z} / 3\right)$.

Sketch of proof: α zero in $K_{P}(Y)$, case 3

$$
x z^{2} u^{3}+y^{2} z v^{3}+x y^{2} w^{3}+f t^{3}=0, \alpha=(x / z, y / z)
$$

P is not on the lines $x=0, y=0$, or $z=0$.

- x / z and y / z are units in the local ring of P, so that the image of α in K_{P} comes from the cohomology group $H_{e t t}^{2}\left(\widehat{\mathcal{O}}_{\mathbb{P}^{2}, P}, \mathbb{Z} / 3\right)$.
- $H_{e t t}^{2}\left(\widehat{\mathcal{O}}_{\mathbb{P}^{2}, P}, \mathbb{Z} / 3\right)=H^{2}(\kappa(P), \mathbb{Z} / 3)=0$ by cohomological dimension.

Corollary

We obtained:

$$
x z^{2} u^{3}+y^{2} z v^{3}+x y^{2} w^{3}+f t^{3}=0 \subset \mathbb{P}_{[x: y: z]}^{2} \times \mathbb{P}_{[u: v: w: t]}^{3}
$$

where

$$
f=x^{3}+y^{3}+z^{3}+3 x^{2} y+3 x y^{2}+3 y^{2} z+3 y z^{2}+3 x z^{2}+3 x^{2} z
$$

is a reference variety.

Corollary

We obtained:

$$
x z^{2} u^{3}+y^{2} z v^{3}+x y^{2} w^{3}+f t^{3}=0 \subset \mathbb{P}_{[x: y: z]}^{2} \times \mathbb{P}_{[u: v: w: t]}^{3}
$$

where

$$
f=x^{3}+y^{3}+z^{3}+3 x^{2} y+3 x y^{2}+3 y^{2} z+3 y z^{2}+3 x z^{2}+3 x^{2} z
$$

is a reference variety.
Then:

Theorem (Krylov-Okada, Nicaise-Ottem)

Let k be an algebraically closed field of char $(k) \neq 3$. A very general hypersurface of bidegree $(3,3)$ in $\mathbb{P}_{k}^{2} \times \mathbb{P}_{k}^{3}$ is not stably rational.

General formula

$\pi: X \rightarrow S=\mathbb{P}_{\mathbb{C}}^{2}$ cubic surface bundle, $K=\mathbb{C}(x, y)$.

$$
\begin{gathered}
H_{n r, \pi}^{2}(\mathbb{C}(X) / \mathbb{C}, \mathbb{Z} / 3)=\operatorname{Im}\left[H^{2}(K, \mathbb{Z} / 3) \rightarrow H^{2}\left(K\left(X_{K}\right), \mathbb{Z} / 3\right)\right] \bigcap \\
\cap_{P \in S^{(1)} \cup S^{(2)}} \operatorname{Ker}\left[H^{2}(K) \rightarrow H^{2}\left(K_{P}\right) \rightarrow H^{2}\left(K_{P}\left(X_{K_{P}}\right)\right)\right],
\end{gathered}
$$

General formula

$\pi: X \rightarrow S=\mathbb{P}_{\mathbb{C}}^{2}$ cubic surface bundle, $K=\mathbb{C}(x, y)$.

$$
\begin{gathered}
H_{n r, \pi}^{2}(\mathbb{C}(X) / \mathbb{C}, \mathbb{Z} / 3)=\operatorname{Im}\left[H^{2}(K, \mathbb{Z} / 3) \rightarrow H^{2}\left(K\left(X_{K}\right), \mathbb{Z} / 3\right)\right] \bigcap \\
\cap_{P \in S^{(1)} \cup S^{(2)}} \operatorname{Ker}\left[H^{2}(K) \rightarrow H^{2}\left(K_{P}\right) \rightarrow H^{2}\left(K_{P}\left(X_{K_{P}}\right)\right)\right]
\end{gathered}
$$

- $\alpha \in H^{2}(K)$ is determined by residues at $P \in S$ of codimension 1, by Bloch-Ogus:

$$
\begin{aligned}
0 \rightarrow H^{2}(K, \mathbb{Z} / 3) \xrightarrow{\oplus \partial^{2}} \oplus_{P \in S^{(1)}} H^{1}(& \kappa(P), \mathbb{Z} / 3) \rightarrow \\
& \stackrel{\oplus \partial^{1}}{\rightarrow} \oplus_{p \in S^{(2)}} H^{0}(\kappa(p), \mathbb{Z} / 3)
\end{aligned}
$$

- we need to specify which residues are allowed:

General formula

$\pi: X \rightarrow S=\mathbb{P}_{\mathbb{C}}^{2}$ cubic surface bundle, $K=\mathbb{C}(x, y)$.

$$
\begin{gathered}
H_{n r, \pi}^{2}(\mathbb{C}(X) / \mathbb{C}, \mathbb{Z} / 3)=\operatorname{Im}\left[H^{2}(K, \mathbb{Z} / 3) \rightarrow H^{2}\left(K\left(X_{K}\right), \mathbb{Z} / 3\right)\right] \bigcap \\
\cap_{P \in S^{(1)} \cup S^{(2)}} \operatorname{Ker}\left[H^{2}(K) \rightarrow H^{2}\left(K_{P}\right) \rightarrow H^{2}\left(K_{P}\left(X_{K_{P}}\right)\right)\right],
\end{gathered}
$$

- $\alpha \in H^{2}(K)$ is determined by residues at $P \in S$ of codimension 1, by Bloch-Ogus:

$$
\begin{aligned}
0 \rightarrow H^{2}(K, \mathbb{Z} / 3) \xrightarrow{\oplus \partial^{2}} \oplus_{P \in S^{(1)}} H^{1}(& \kappa(P), \mathbb{Z} / 3) \rightarrow \\
& \stackrel{\oplus \partial^{1}}{\rightarrow} \oplus_{p \in S^{(2)}} H^{0}(\kappa(p), \mathbb{Z} / 3)
\end{aligned}
$$

- we need to specify which residues are allowed: $X_{K_{P}}$ is birational to a SB surface \Rightarrow the fiber $X_{P}=\cup 3$ conjugated planes

General formula

$\pi: X \rightarrow S=\mathbb{P}_{\mathbb{C}}^{2}$ cubic surface bundle, $K=\mathbb{C}(x, y)$.

$$
\begin{gathered}
H_{n r, \pi}^{2}(\mathbb{C}(X) / \mathbb{C}, \mathbb{Z} / 3)=\operatorname{Im}\left[H^{2}(K, \mathbb{Z} / 3) \rightarrow H^{2}\left(K\left(X_{K}\right), \mathbb{Z} / 3\right)\right] \bigcap \\
\cap_{P \in S^{(1)} \cup S^{(2)}} \operatorname{Ker}\left[H^{2}(K) \rightarrow H^{2}\left(K_{P}\right) \rightarrow H^{2}\left(K_{P}\left(X_{K_{P}}\right)\right)\right],
\end{gathered}
$$

- $\alpha \in H^{2}(K)$ is determined by residues at $P \in S$ of codimension 1, by Bloch-Ogus:

$$
\begin{aligned}
0 \rightarrow H^{2}(K, \mathbb{Z} / 3) \xrightarrow{\oplus \partial^{2}} \oplus_{P \in S^{(1)}} H^{1}(& \kappa(P), \mathbb{Z} / 3) \rightarrow \\
& \xrightarrow{\oplus \partial^{1}} \oplus_{p \in S^{(2)}} H^{0}(\kappa(p), \mathbb{Z} / 3)
\end{aligned}
$$

- we need to specify which residues are allowed: $X_{K_{P}}$ is birational to a SB surface \Rightarrow the fiber $X_{P}=\cup 3$ conjugated planes (condition appeared in a joint work with A. Auel and C. Böhning).

General formula

Set up: $\pi: X \rightarrow S=\mathbb{P}_{\mathbb{C}}^{2}$ cubic surface bundle, $K=\mathbb{C}(x, y)$. Assume:

- X_{K} is a smooth minimal cubic surface (so $H^{2}(K, \mathbb{Z} / 3) \hookrightarrow H^{2}\left(K\left(X_{K}\right), \mathbb{Z} / 3\right)$);
- fibres of π over codimension 1 points of S are reduced.

General formula

Set up: $\pi: X \rightarrow S=\mathbb{P}_{\mathbb{C}}^{2}$ cubic surface bundle, $K=\mathbb{C}(x, y)$. Assume:

- X_{K} is a smooth minimal cubic surface (so $H^{2}(K, \mathbb{Z} / 3) \hookrightarrow H^{2}\left(K\left(X_{K}\right), \mathbb{Z} / 3\right)$);
- fibres of π over codimension 1 points of S are reduced.

Determine:

- $C=\cup_{i=1}^{n} C_{i} \subset S$ a divisor corresponding to the set of codimension 1 points of S over which the fibre of π is geometrically a union of three planes permuted by Galois.
- $\gamma_{i} \in \kappa\left(C_{i}\right)^{*} /\left(\kappa\left(C_{i}\right)^{*}\right)^{3}$ the class corresponding to the cyclic extension.

Assume C is snc.

General formula

Set up: $\pi: X \rightarrow S=\mathbb{P}_{\mathbb{C}}^{2}$ cubic surface bundle, $K=\mathbb{C}(x, y)$.
Assume:

- X_{K} is a smooth minimal cubic surface (so $H^{2}(K, \mathbb{Z} / 3) \hookrightarrow H^{2}\left(K\left(X_{K}\right), \mathbb{Z} / 3\right)$);
- fibres of π over codimension 1 points of S are reduced.

Determine:

- $C=\cup_{i=1}^{n} C_{i} \subset S$ a divisor corresponding to the set of codimension 1 points of S over which the fibre of π is geometrically a union of three planes permuted by Galois.
- $\gamma_{i} \in \kappa\left(C_{i}\right)^{*} /\left(\kappa\left(C_{i}\right)^{*}\right)^{3}$ the class corresponding to the cyclic extension.

Assume C is snc. Then (briefly):

- $\alpha \in H_{n r, \pi}^{2}$ is only allowed to have residues γ_{i} at $C_{i}+$ condition on K_{P}.
- glue by Bloch-Ogus.

General formula

Set up: $\pi: X \rightarrow S=\mathbb{P}_{\mathbb{C}}^{2}, C=\cup_{i=1}^{n} C_{i}, \gamma_{i} \in \kappa\left(C_{i}\right)^{*} /\left(\kappa\left(C_{i}\right)^{*}\right)^{3}$.

$$
\begin{gathered}
H_{n r, \pi}^{2}(\mathbb{C}(X) / \mathbb{C}, \mathbb{Z} / 3)=\operatorname{Im}\left[H^{2}(K, \mathbb{Z} / 3) \rightarrow H^{2}\left(K\left(X_{K}\right), \mathbb{Z} / 3\right)\right] \cap \\
\cap_{P \in S^{(1)} \cup S^{(2)}} \operatorname{Ker}\left[H^{2}(K) \rightarrow H^{2}\left(K_{P}\right) \rightarrow H^{2}\left(K_{P}\left(X_{K P}\right)\right)\right],
\end{gathered}
$$

General formula

Set up: $\pi: X \rightarrow S=\mathbb{P}_{\mathbb{C}}^{2}, C=\cup_{i=1}^{n} C_{i}, \gamma_{i} \in \kappa\left(C_{i}\right)^{*} /\left(\kappa\left(C_{i}\right)^{*}\right)^{3}$.

$$
\begin{gathered}
H_{n r, \pi}^{2}(\mathbb{C}(X) / \mathbb{C}, \mathbb{Z} / 3)=\operatorname{Im}\left[H^{2}(K, \mathbb{Z} / 3) \rightarrow H^{2}\left(K\left(X_{K}\right), \mathbb{Z} / 3\right)\right] \cap \\
\cap_{P \in S^{(1)} \cup S^{(2)}} \operatorname{Ker}\left[H^{2}(K) \rightarrow H^{2}\left(K_{P}\right) \rightarrow H^{2}\left(K_{P}\left(X_{K_{P}}\right)\right)\right],
\end{gathered}
$$

Then

$$
H_{n r, \pi}^{2}(\mathbb{C}(X) / \mathbb{C}, \mathbb{Z} / 3)=\left\{\underline{a}=\left\{a_{i}\right\}_{i=1}^{n}, a_{i} \in\{-1,0,1\}\right\} \subset(\mathbb{Z} / 3)^{n}
$$

(i) $a_{i} \neq 0 \Rightarrow X_{\kappa_{c_{i}}}$ is birational to SB;
(ii) (Bloch-Ogus)

$$
\sum_{i=1}^{n} \sum_{P \in S^{(2)}} \partial_{P}\left(\gamma_{i}^{a_{i}}\right)=0
$$

(iii) if $P \in C_{i} \cap C_{j}$ and if $\partial_{P}\left(\gamma_{i}^{a_{i}}\right)=-\partial_{P}\left(\gamma_{j}^{\alpha_{j}}\right) \neq 0$, one has that the base change $X_{K_{P}}$ is birational to SB.

The end

THANK YOU!!!

