On cubic surface bundles

Alena Pirutka

Courant Institute, New York University

April 19, 2024 Birational Geometry Seminar Online seminar

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

General question of interest: determine which smooth projective varieties X are rational: is X birational to Pⁿ_k? (or stably rational, or retract rational...)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- General question of interest: determine which smooth projective varieties X are rational: is X birational to Pⁿ_k? (or stably rational, or retract rational...)
- Ø Methods:
 - X is rational: come up with a geometric construction;

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

- General question of interest: determine which smooth projective varieties X are rational: is X birational to Pⁿ_k? (or stably rational, or retract rational...)
- Ø Methods:
 - X is rational: come up with a geometric construction;
 - X is not rational:
 - find invariants of X;
 - find invariants of a (maybe singular) specialization X_0 of X.

ション ふゆ アメリア メリア しょうくしゃ

- General question of interest: determine which smooth projective varieties X are rational: is X birational to Pⁿ_k? (or stably rational, or retract rational...)
- Ø Methods:
 - X is rational: come up with a geometric construction;
 - X is not rational:
 - find invariants of X;
 - find invariants of a (maybe singular) specialization X_0 of X.

ション ふゆ く 山 マ チャット しょうくしゃ

• this motivates: what is the available pool of X_0 with invariants?

- General question of interest: determine which smooth projective varieties X are rational: is X birational to Pⁿ_k? (or stably rational, or retract rational...)
- 2 Methods:
 - X is rational: come up with a geometric construction;
 - X is not rational:
 - find invariants of X;
 - find invariants of a (maybe singular) specialization X_0 of X.

ション ふゆ く 山 マ チャット しょうくしゃ

- this motivates: what is the available pool of X_0 with invariants?
- **9** goal: add to the pool $X_0 \to \mathbb{P}^2_{\mathbb{C}}$ with fibers cubic surfaces:

- General question of interest: determine which smooth projective varieties X are rational: is X birational to Pⁿ_k? (or stably rational, or retract rational...)
- 2 Methods:
 - X is rational: come up with a geometric construction;
 - X is not rational:
 - find invariants of X;
 - find invariants of a (maybe singular) specialization X_0 of X.

(日) (周) (日) (日) (日) (0) (0)

- this motivates: what is the available pool of X_0 with invariants?
- **9** goal: add to the pool $X_0 \to \mathbb{P}^2_{\mathbb{C}}$ with fibers cubic surfaces:
 - invariants: use Galois cohomology and geometry of cubics;

- General question of interest: determine which smooth projective varieties X are rational: is X birational to Pⁿ_k? (or stably rational, or retract rational...)
- 2 Methods:
 - X is rational: come up with a geometric construction;
 - X is not rational:
 - find invariants of X;
 - find invariants of a (maybe singular) specialization X_0 of X.
- this motivates: what is the available pool of X_0 with invariants?
- **9** goal: add to the pool $X_0 \to \mathbb{P}^2_{\mathbb{C}}$ with fibers cubic surfaces:
 - invariants: use Galois cohomology and geometry of cubics;
 - example:

 $\begin{aligned} X : & xz^2u^3 + y^2zv^3 + xy^2w^3 + ft^3 = 0 \subset \mathbb{P}^2_{[x:y:z]} \times \mathbb{P}^3_{[u:v:w:t]} \\ f &= x^3 + y^3 + z^3 + 3x^2y + 3xy^2 + 3y^2z + 3yz^2 + 3xz^2 + 3x^2z. \end{aligned}$

ション ふゆ く 山 マ チャット しょうくしゃ

INTRODUCTION

Properties of rationality

k a field, X/k projective integral variety

- X is rational: X is birational to $\mathbb{P}_k^n \Leftrightarrow k(X)/k$ is a purely transcendental extension;
- X is stably rational: $X \times \mathbb{P}_k^m$ is rational, for some m;
- X is unirational: there is a dominant rational map $\mathbb{P}_k^n \dashrightarrow X$;

ション ふゆ アメリア メリア しょうくしゃ

k a field, X/k projective integral variety

- X is rational: X is birational to $\mathbb{P}_k^n \Leftrightarrow k(X)/k$ is a purely transcendental extension;
- X is stably rational: $X \times \mathbb{P}_k^m$ is rational, for some m;
- X is unirational: there is a dominant rational map $\mathbb{P}_k^n \dashrightarrow X$;

We have implications \Downarrow .

All notions are equivalent for X/\mathbb{C} smooth, of dimension 1 $(X \simeq \mathbb{P}^1_{\mathbb{C}})$ or 2 (birational class of $\mathbb{P}^2_{\mathbb{C}}$). Next: typical examples and counterexamples.

Rationality proofs

Notation:

 $X_d \subset \mathbb{P}^n_k$: $f(x_0, \ldots x_n) = 0$, deg f = d a smooth hypersurface.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Rationality proofs

Notation:

$$X_d \subset \mathbb{P}^n_k$$
: $f(x_0, \ldots x_n) = 0$, deg $f = d$ a smooth hypersurface.

• smooth quadrics X_2 with $X_2(k) \neq \emptyset$ are **rational**:

Rational parametrization:

nontangent lines through $A \leftrightarrow$ second intersection point with the quadric.

Irrationality proofs over \mathbb{C} : classical

Classical methods:

- compute some invariant i(X);
- $i(X) \neq 0 \Rightarrow X$ is not rational.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Irrationality proofs over \mathbb{C} : classical

Classical methods:

- compute some invariant i(X);
- $i(X) \neq 0 \Rightarrow X$ is not rational.

Examples of not rational smooth threefolds:

- $X_3 \subset \mathbb{P}^4_{\mathbb{C}}$ (Clemens-Griffiths, using *intermediate Jacobian*);
- **2** $X_4 \subset \mathbb{P}^4_{\mathbb{C}}$ (Iskovskikh-Manin, using *rigidity*);
- \bigcirc Z a resolution of

$$Y: z_4^2 - f_4(x_0, x_1, x_2, x_3) = 0$$

a double cover of $\mathbb{P}^3_{\mathbb{C}}$ ramified along some quartic (Artin-Mumford, $H^3(Z,\mathbb{Z})_{tors} = Br Z \neq 0$).

These varieties provide examples of unirational not rational complex threefolds.

Irrationality proofs over \mathbb{C} : specialization

(Beauville, Voisin, Colliot-Thélène–Pirutka, Totaro, Schreieder):

• consider a family of varieties:

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

• compute a suitable invariant $i(X_0)$;

Irrationality proofs over \mathbb{C} : specialization

(Beauville, Voisin, Colliot-Thélène–Pirutka, Totaro, Schreieder):

• consider a family of varieties:

ション ふゆ く 山 マ チャット しょうくしゃ

- compute a suitable invariant $i(X_0)$;
- $i(X_0) \neq 0$ + **EPSILON** \Rightarrow a very general $X = X_b$ is not (stably) rational;
- (in some cases, all previously computable *i*(*X*) vanish);

Irrationality proofs over \mathbb{C} : specialization

(Beauville, Voisin, Colliot-Thélène–Pirutka, Totaro, Schreieder):

• consider a family of varieties:

- compute a suitable invariant $i(X_0)$;
- *i*(X₀) ≠ 0 + EPSILON ⇒ a very general X = X_b is not (stably) rational;
- (in some cases, all previously computable i(X) vanish);
- \mathcal{X}_b very general: $b \notin \bigcup_{i \in \mathbb{N}} B_i(\mathbb{C})$, $B_i \subset B$ closed.
- EPSILON:
 - restriction on singularities of X₀;
 - "restriction to subvarieties" for *i* (Schreieder).

•
$$dimX_d = 3$$
: (Colliot-Thélène–Pirutka), $d = 4$;

- $dimX_d = 3$: (Colliot-Thélène-Pirutka), d = 4;
- 2 $dim X_d = 4$: (Totaro) d = 4, (Kollár) d = 5;

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

- $dimX_d = 3$: (Colliot-Thélène-Pirutka), d = 4;
- 2 $dim X_d = 4$: (Totaro) d = 4, (Kollár) d = 5;
- dimX_d = 5; (Nicaise-Ottem) d = 4, (Schreieder) d = 5, (Kollár) d = 6;

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

- $dimX_d = 3$: (Colliot-Thélène-Pirutka), d = 4;
- 2 $dim X_d = 4$: (Totaro) d = 4, (Kollár) d = 5;
- dimX_d = 5; (Nicaise-Ottem) d = 4, (Schreieder) d = 5, (Kollár) d = 6;

$${ extsf{0}}$$
 (Schreieder) $X_d \subset \mathbb{P}^{n+1}$ with

$$d \ge \log_2 n + 2,$$

this generalizes previous bounds by Kollár, and Totaro, of order $d\sim\geq 2/3n.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

- $dimX_d = 3$: (Colliot-Thélène-Pirutka), d = 4;
- 2 $dim X_d = 4$: (Totaro) d = 4, (Kollár) d = 5;
- dimX_d = 5; (Nicaise-Ottem) d = 4, (Schreieder) d = 5, (Kollár) d = 6;

$${ extsf{0}}$$
 (Schreieder) $X_d \subset \mathbb{P}^{n+1}$ with

$$d \geq \log_2 n + 2,$$

this generalizes previous bounds by Kollár, and Totaro, of order $d\sim\geq 2/3n.$

Other examples:

- cyclic covers,
- complete intersections,
- hypersurfaces in $\mathbb{P}^m \times \mathbb{P}^n$, and more.

$$i = Br(X'_0)[2] = H^2_{nr}(X_0, \mathbb{Z}/2) \subset H^2(\mathbb{C}(X_0), \mathbb{Z}/2)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

here $X'_0 \to X_0$ is a resolution of singularities.

$$i = Br(X'_0)[2] = H^2_{nr}(X_0, \mathbb{Z}/2) \subset H^2(\mathbb{C}(X_0), \mathbb{Z}/2)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

here $X'_0 \to X_0$ is a resolution of singularities.

•
$$X_0$$
: cyclic cover of \mathbb{P}^n , $i = H^0(X'_0, \Omega^m)$

$$i = Br(X'_0)[2] = H^2_{nr}(X_0, \mathbb{Z}/2) \subset H^2(\mathbb{C}(X_0), \mathbb{Z}/2)$$

here $X'_0 \to X_0$ is a resolution of singularities.

- X_0 : cyclic cover of \mathbb{P}^n , $i = H^0(X'_0, \Omega^m)$
- more generally, X_0 : a quadric bundle over \mathbb{P}^n ,

$$i = H^m_{nr}(X_0) \subset H^m(\mathbb{C}(X_0));$$

ション ふゆ く 山 マ チャット しょうくしゃ

$$i = Br(X'_0)[2] = H^2_{nr}(X_0, \mathbb{Z}/2) \subset H^2(\mathbb{C}(X_0), \mathbb{Z}/2)$$

here $X'_0 \to X_0$ is a resolution of singularities.

- X_0 : cyclic cover of \mathbb{P}^n , $i = H^0(X'_0, \Omega^m)$
- more generally, X_0 : a quadric bundle over \mathbb{P}^n ,

$$i = H^m_{nr}(X_0) \subset H^m(\mathbb{C}(X_0));$$

• X_0 : a fibration over \mathbb{P}^n in Fermat-Pfister forms, $i = H_{nr}^m(X_0)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Galois cohomology

◆□ > < 個 > < E > < E > E 9 < 0</p>

$H^{i}(K,\mathbb{Z}/2)$ and residues

Assume: $K \supset \mu_n$.

1

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

$H^{i}(K,\mathbb{Z}/2)$ and residues

Assume: $K \supset \mu_n$.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

$H^{i}(K,\mathbb{Z}/2)$ and residues

Assume: $K \supset \mu_n$.

$$\begin{array}{l} \mathsf{a},\mathsf{b}\in H^1(K,\mathbb{Z}/n)\simeq K^*/K^{*n}\\ & \bullet \quad \partial_{\mathsf{v}}^1(\mathsf{a})=\mathsf{v}(\mathsf{a}) \ \mathrm{mod} \ n\in H^0(\kappa(\mathsf{v}),\mathbb{Z}/n)\simeq \mathbb{Z}/n, \end{array}$$

$$\begin{aligned} a, b \in H^{1}(K, \mathbb{Z}/n) &\simeq K^{*}/K^{*n} \\ \bullet \quad \partial_{v}^{1}(a) &= v(a) \mod n \in H^{0}(\kappa(v), \mathbb{Z}/n) \simeq \mathbb{Z}/n, \\ \bullet \quad \partial_{v}^{2}(a, b) &= (-1)^{v(a)v(b)} \overline{\frac{a^{v(b)}}{b^{v(a)}}} \\ & \text{where } \overline{\frac{a^{v(b)}}{b^{v(a)}}} \text{ is the image of the unit } \frac{a^{v(b)}}{b^{v(a)}} \text{ in } \kappa(v)^{*}/\kappa(v)^{*n}. \end{aligned}$$

•
$$S = \mathbb{P}^2_{\mathbb{C}}, \ K = \mathbb{C}(x, y), \ \alpha = (x, y) \in H^2(K, \mathbb{Z}/2);$$

• $v_D: K^* \to \mathbb{Z}$ is the order of vanishing at $D = \{x = 0\};$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

• recall:
$$\partial_v^2(a,b) = (-1)^{v(a)v(b)} \frac{a^{v(b)}}{b^{v(a)}};$$

• then
$$\partial^2_{\nu_D}(\alpha) = \partial^2_{\nu_D}(x, y) =$$

•
$$S = \mathbb{P}^2_{\mathbb{C}}, \ K = \mathbb{C}(x, y), \ \alpha = (x, y) \in H^2(K, \mathbb{Z}/2);$$

• $v_D: K^* \to \mathbb{Z}$ is the order of vanishing at $D = \{x = 0\}$;

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

• recall:
$$\partial_{v}^{2}(a,b) = (-1)^{v(a)v(b)} \frac{a^{v(b)}}{b^{v(a)}};$$

• then
$$\partial^2_{v_D}(\alpha) = \partial^2_{v_D}(x, y) = y \in \mathbb{C}(y)^* / \mathbb{C}(y)^{*2}$$
.

• X/k an integral variety, then

$$H^2_{nr}(X) = H^2_{nr}(k(X)/k) = \cap_v \operatorname{Ker} \partial_v^2$$

where the intersection is over all discrete valuations v on k(X) (of rank one), trivial on the field k.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

H^{*i*}_{*nr*}: definition

• X/k an integral variety, then

$$H^2_{nr}(X) = H^2_{nr}(k(X)/k) = \cap_v \operatorname{Ker} \partial_v^2$$

where the intersection is over all discrete valuations v on k(X) (of rank one), trivial on the field k.

• One has

$$H^2(k)
ightarrow H^2_{nr}(k(X)/k)$$

ション ふゆ アメリア メリア しょうくしゃ

(recall: if v(a) = v(b) = 0, then $\partial(a, b) = 0$.

• X/k an integral variety, then

$$H^2_{nr}(X) = H^2_{nr}(k(X)/k) = \cap_v \operatorname{Ker} \partial_v^2$$

where the intersection is over all discrete valuations v on k(X) (of rank one), trivial on the field k.

One has

$$H^2(k) \rightarrow H^2_{nr}(k(X)/k)$$

(recall: if v(a) = v(b) = 0, then $\partial(a, b) = 0$.

- Birational invariant by definition (Saltman, Bogomolov, Colliot-Thélène-Ojanguren).
- X/k is a stably rational, then $H^i(k) \simeq H^i_{nr}(k(X)/k)$.
- Advantage: No need to compute a smooth model of X

• X/k an integral variety, then

$$H^2_{nr}(X) = H^2_{nr}(k(X)/k) = \cap_v \operatorname{Ker} \partial_v^2$$

where the intersection is over all discrete valuations v on k(X) (of rank one), trivial on the field k.

One has

$$H^2(k)
ightarrow H^2_{nr}(k(X)/k)$$

(recall: if v(a) = v(b) = 0, then $\partial(a, b) = 0$.

- Birational invariant by definition (Saltman, Bogomolov, Colliot-Thélène-Ojanguren).
- X/k is a stably rational, then $H^i(k) \simeq H^i_{nr}(k(X)/k)$.
- Advantage: No need to compute a smooth model of X
- Fact: if X is smooth and projective, $H^2_{nr}(X, \mathbb{Z}/n) \simeq Br(X)[n]$.

ション ふゆ く 山 マ チャット しょうくしゃ

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

where $K = \mathbb{C}(x, y)$ is the field of functions of S,

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

where $K = \mathbb{C}(x, y)$ is the field of functions of S, note: $K(X_K) = \mathbb{C}(X)$.

• Set up:

 $\begin{array}{cccc} X_{K} & \longrightarrow & X & \longleftarrow & \text{fibration in geometrically rational varieties} \\ & & & & & \\ & & & & & \\ & & & & \\$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

where $K = \mathbb{C}(x, y)$ is the field of functions of *S*, note: $K(X_K) = \mathbb{C}(X)$.

• Set up:

 $\begin{array}{cccc} X_{K} & \longrightarrow & X & \longleftarrow & \text{fibration in geometrically rational varieties} \\ & & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & &$

where $K = \mathbb{C}(x, y)$ is the field of functions of *S*, note: $K(X_{\kappa}) = \mathbb{C}(X)$.

• $\alpha \in H^2(K)$ is ramified on S as $H^2_{nr}(\mathbb{C}(S)/\mathbb{C}) = H^2(\mathbb{C}) = 0$.

うして ふゆう ふほう ふほう うらつ

• Set up:

 $\begin{array}{cccc} X_{K} & \longrightarrow & X & \longleftarrow & \text{fibration in geometrically rational varieties} \\ & & & & & \\ & & & & & \\ & & & & \\$

where $K = \mathbb{C}(x, y)$ is the field of functions of *S*, note: $K(X_K) = \mathbb{C}(X)$.

• $\alpha \in H^2(K)$ is ramified on S as $H^2_{nr}(\mathbb{C}(S)/\mathbb{C}) = H^2(\mathbb{C}) = 0$.

• idea: if $\partial_{\nu_D}^2(\alpha) \neq 0$, then π degenerates along D.

Relative unramified cohomology $H^i_{nr,\pi}(k(X)/k) \subset H^i(k(X))$

うして ふゆう ふほう ふほう うらつ

Relative unramified cohomology $H^i_{nr,\pi}(k(X)/k) \subset H^i(k(X))$

Definition

$$\begin{aligned} H^{i}_{nr,\pi}(k(X)/k) &= \operatorname{Im}[H^{i}(K) \to H^{i}(K(X_{K}))] \bigcap \\ & \cap_{P} \operatorname{Ker}[H^{i}(K) \to H^{i}(K_{P}) \to H^{i}(K_{P}(X_{K_{P}}))], \end{aligned}$$

where

- *P* runs over all scheme points of *S* of positive codimension: $P \in S^{(i)}$ for i > 0
- K_P is the field of fractions of the completed local ring $\widehat{O}_{S,P}$.

• $H^i_{nr,\pi}(k(X)/k) \subset H^i_{nr}(k(X)/k).$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

- $H^i_{nr,\pi}(k(X)/k) \subset H^i_{nr}(k(X)/k).$
- if α ∈ Hⁱ_{nr,π}(k(X)/k) nonzero, then X is a reference variety (Schreieder).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Cubic surface bundles

◆□ > < 個 > < E > < E > E 9 < 0</p>

$$\begin{split} H^2_{nr,\pi}(k(X)/k) &= \operatorname{Im}[H^2(K) \to H^2(K(X_K))] \bigcap \\ & \cap_P \operatorname{Ker}[H^2(K) \to H^2(K_P) \to H^2(K_P(X_{K_P}))]. \end{split}$$

Let $Y = X_K$.

$$egin{aligned} H^2_{nr,\pi}(k(X)/k) &= \operatorname{Im}[H^2(K) o H^2(K(X_K))] igcap_{} & \ & \cap_P \operatorname{Ker}[H^2(K) o H^2(K_P) o H^2(K_P(X_{K_P}))]. \end{aligned}$$

ション ふゆ アメリア メリア しょうくしゃ

Let $Y = X_K$. Question: when $H^2(F) \to H^2(F(Y))$ is:

- injective (F = K)
- not injective, and what is the kernel $(F = K_P)$?

$$egin{aligned} H^2_{nr,\pi}(k(X)/k) &= \operatorname{Im}[H^2(K) o H^2(K(X_K))] igcap_{} & \ & \cap_P \operatorname{Ker}[H^2(K) o H^2(K_P) o H^2(K_P(X_{K_P}))]. \end{aligned}$$

Let $Y = X_K$. Question: when $H^2(F) \to H^2(F(Y))$ is:

- injective (F = K)
- not injective, and what is the kernel $(F = K_P)$?

Known answers for:

- Y a quadric (Arason, Pfister, Kahn-Rost-Sujatha)
- Y a geometrically rational surface (Colliot-Thélène Karpenko
 Merkurjev).

(Colliot-Thélène - Karpenko - Merkurjev) F a field, Y/F geometrically rational surface. Then

- $\operatorname{Ker}[H^2(F,\mathbb{Z}/3)\to H^2(F(Y),\mathbb{Z}/3)]\neq 0$ iff
- Y is F-birational to Y' a non-split Severi-Brauer (SB) surface.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

(Colliot-Thélène - Karpenko - Merkurjev) F a field, Y/F geometrically rational surface. Then

- $\operatorname{Ker}[H^2(F, \mathbb{Z}/3) \to H^2(F(Y), \mathbb{Z}/3)] \neq 0$ iff
- Y is F-birational to Y' a non-split Severi-Brauer (SB) surface. Then

$$\operatorname{Ker}[H^2(F,\mathbb{Z}/3) \to H^2(F(Y),\mathbb{Z}/3)] \simeq \mathbb{Z}/3,$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

generated by the class of Y'.

$$Y : au^3 + bv^3 + abw^3 + ft^3 = 0, a, b, f \in F$$

- Assume: none of the elements *a*, *b*, *ab*, *f*, *af*, *bf* is a cube in *F*.
- (Segre) then the surface is minimal, and

$$H^2(F,\mathbb{Z}/3\mathbb{Z}) \to H^2(F(Y),\mathbb{Z}/3\mathbb{Z})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

is injective.

$$Y:au^3+bv^3+abw^3+t^3=0, a,b\in F$$
 then $(a,b)\in \operatorname{Ker}[H^2(F,\mathbb{Z}/3)\to H^2(F(Y),\mathbb{Z}/3)]$:

$$Y : au^{3} + bv^{3} + abw^{3} + t^{3} = 0, a, b \in F$$

then $(a, b) \in \text{Ker}[H^{2}(F, \mathbb{Z}/3) \to H^{2}(F(Y), \mathbb{Z}/3)]:$
• if a is a cube in $F(Y)$, then $(a, b) = 0$.

$$Y : au^3 + bv^3 + abw^3 + t^3 = 0, a, b \in F$$

then $(a, b) \in \text{Ker}[H^2(F, \mathbb{Z}/3) \rightarrow H^2(F(Y), \mathbb{Z}/3)]$:
• if a is a cube in $F(Y)$, then $(a, b) = 0$.
• Otherwise, let $L = F(Y)(\sqrt[3]{a})$. In $F(Y)$ we have a relation
 $b = -\frac{t^3 + au^3}{v^3 + aw^3}$,

SO

$$b = N_{L/F(Y)}(\beta)$$

where

$$\beta = -\frac{t + \sqrt[3]{au}}{v + \sqrt[3]{aw}}.$$

・ロ> < 回> < 回> < 回> < 回> < 回

$$\begin{split} Y: au^3 + bv^3 + abw^3 + t^3 &= 0, a, b \in F \\ \text{then } (a, b) \in \operatorname{Ker}[H^2(F, \mathbb{Z}/3) \to H^2(F(Y), \mathbb{Z}/3)]: \\ \bullet \text{ if } a \text{ is a cube in } F(Y), \text{ then } (a, b) &= 0. \\ \bullet \text{ Otherwise, let } L &= F(Y)(\sqrt[3]{a}). \text{ In } F(Y) \text{ we have a relation} \\ b &= -\frac{t^3 + au^3}{v^3 + aw^3}, \end{split}$$

SO

$$b = N_{L/F(Y)}(\beta)$$

where

$$\beta = -\frac{t + \sqrt[3]{au}}{v + \sqrt[3]{aw}}.$$

• Hence in $H^2(F(Y), \mathbb{Z}/3\mathbb{Z})$: $(a, b) = (a, N_{L/F(Y)}(\beta)) = N_{L/F(Y)}(a, \beta) = 0.$

Example

• $k = \mathbb{C}$

(or k an algebraically closed field of $char(k) \neq 3$)

• $X \subset \mathbb{P}^2_{[x:y:z]} imes \mathbb{P}^3_{[u:v:w:t]}$ is a cubic surface bundle over k:

$$xz^2u^3 + y^2zv^3 + xy^2w^3 + ft^3 = 0,$$

where

$$f = x^{3} + y^{3} + z^{3} + 3x^{2}y + 3xy^{2} + 3y^{2}z + 3yz^{2} + 3xz^{2} + 3x^{2}z,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Example

• $k = \mathbb{C}$

(or k an algebraically closed field of $char(k) \neq 3$)

• $X \subset \mathbb{P}^2_{[x:y:z]} imes \mathbb{P}^3_{[u:v:w:t]}$ is a cubic surface bundle over k:

$$xz^2u^3 + y^2zv^3 + xy^2w^3 + ft^3 = 0,$$

where

$$f = x^{3} + y^{3} + z^{3} + 3x^{2}y + 3xy^{2} + 3y^{2}z + 3yz^{2} + 3xz^{2} + 3x^{2}z,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Let
$$\mathcal{K} = \mathbb{C}(\mathbb{P}^2) = \mathbb{C}(x/z, y/z)$$
, let
 $\alpha = (x/z, y/z) \in H^2(\mathcal{K}, \mathbb{Z}/3)$. Then
 $\alpha \in H^2_{nr,\pi}(\mathbb{C}(X)/\mathbb{C}, \mathbb{Z}/3)$.

Sketch of proof: α nonzero in $C(X) = K(X_K)$

the generic fibre $Y = X_K$ of π is a minimal cubic surface:

$$xz^2u^3 + y^2zv^3 + xy^2w^3 + ft^3 = 0,$$

ション ふゆ アメリア メリア しょうくしゃ

where

 $f = x^3 + y^3 + z^3 + 3x^2y + 3xy^2 + 3y^2z + 3yz^2 + 3xz^2 + 3x^2z.$

the generic fibre $Y = X_K$ of π is a minimal cubic surface:

$$xz^2u^3 + y^2zv^3 + xy^2w^3 + ft^3 = 0,$$

where

$$f = x^3 + y^3 + z^3 + 3x^2y + 3xy^2 + 3y^2z + 3yz^2 + 3xz^2 + 3x^2z.$$

Recall:

$$au^{3} + bv^{3} + abw^{3} + ft^{3} = 0, \ a, b, f \in K$$

if none of the elements a, b, ab, f, af, bf is a cube then $H^2(K, \mathbb{Z}/3) \to H^2(K(Y), \mathbb{Z}/3)$ is injective.

$$xz^{2}u^{3} + y^{2}zv^{3} + xy^{2}w^{3} + ft^{3} = 0, \ \alpha = (x/z, y/z).$$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

$$xz^{2}u^{3} + y^{2}zv^{3} + xy^{2}w^{3} + ft^{3} = 0, \ \alpha = (x/z, y/z).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Question: For which divisors $D \subset \mathbb{P}^2_{\mathbb{C}}$ one has $\partial_D(\alpha) \neq 0$?

$$xz^{2}u^{3} + y^{2}zv^{3} + xy^{2}w^{3} + ft^{3} = 0, \ \alpha = (x/z, y/z).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Question: For which divisors $D \subset \mathbb{P}^2_{\mathbb{C}}$ one has $\partial_D(\alpha) \neq 0$?

Answer: x = 0 or y = 0 or z = 0.

$$xz^{2}u^{3} + y^{2}zv^{3} + xy^{2}w^{3} + ft^{3} = 0, \ \alpha = (x/z, y/z).$$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

$$xz^{2}u^{3} + y^{2}zv^{3} + xy^{2}w^{3} + ft^{3} = 0, \ \alpha = (x/z, y/z).$$

Let $P \in \mathbb{P}^2_k$ be a point of positive codimension. We have three cases:

- P is the generic point of one of three lines x = 0, y = 0, or z = 0, or an intersection point of two of these lines.
- P is a closed point lying on only one of the lines x = 0, y = 0, or z = 0.

ション ふゆ アメリア メリア しょうくしゃ

Ill other cases.

Blackboard

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへで

Sketch of proof: α zero in $K_P(\overline{Y})$, case 1

$$xz^2u^3 + y^2zv^3 + xy^2w^3 + ft^3 = 0$$
, $\alpha = (x/z, y/z)$, where
 $f = x^3 + y^3 + z^3 + 3x^2y + 3xy^2 + 3y^2z + 3yz^2 + 3xz^2 + 3x^2z$.

P is the generic point of one of three lines x = 0, y = 0, or z = 0, or an intersection point of two of these lines.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Sketch of proof: α zero in $K_P(Y)$, case 1

$$xz^2u^3 + y^2zv^3 + xy^2w^3 + ft^3 = 0$$
, $\alpha = (x/z, y/z)$, where
 $f = x^3 + y^3 + z^3 + 3x^2y + 3xy^2 + 3y^2z + 3yz^2 + 3xz^2 + 3x^2z$.

P is the generic point of one of three lines x = 0, y = 0, or z = 0, or an intersection point of two of these lines. Then

• f is a nonzero cube in $\kappa(P)$, so that f is a cube in K_P (Hensel)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Sketch of proof: α zero in $K_P(Y)$, case 1

$$xz^2u^3 + y^2zv^3 + xy^2w^3 + ft^3 = 0, \ \alpha = (x/z, y/z), \text{ where}$$

 $f = x^3 + y^3 + z^3 + 3x^2y + 3xy^2 + 3y^2z + 3yz^2 + 3xz^2 + 3x^2z.$

P is the generic point of one of three lines x = 0, y = 0, or z = 0, or an intersection point of two of these lines. Then

f is a nonzero cube in κ(P), so that f is a cube in K_P (Hensel)
Y_{K_P} is

$$\frac{x}{z}u^3 + \frac{y^2}{z^2}v^3 + \frac{x}{z}\frac{y^2}{z^2}w^3 + t^3 = 0$$

so that the element $(x/z, y^2/z^2) = 2\alpha$ is in the kernel of the map

$$H^2(K_P,\mathbb{Z}/3) \to H^2(K_P(Y),\mathbb{Z}/3\mathbb{Z}).$$

ション ふゆ アメリア メリア しょうくの

$$xz^2u^3 + y^2zv^3 + xy^2w^3 + ft^3 = 0, \ \alpha = (x/z, y/z).$$

P is a closed point lying on only one of the lines x = 0, y = 0, or z = 0.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

$$xz^{2}u^{3} + y^{2}zv^{3} + xy^{2}w^{3} + ft^{3} = 0, \ \alpha = (x/z, y/z).$$

P is a closed point lying on only one of the lines x = 0, y = 0, or z = 0.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• enough: $\alpha = 0$ over K_P .

$$xz^{2}u^{3} + y^{2}zv^{3} + xy^{2}w^{3} + ft^{3} = 0, \ \alpha = (x/z, y/z).$$

P is a closed point lying on only one of the lines x = 0, y = 0, or z = 0.

- enough: $\alpha = 0$ over K_P .
- assume: *P* is on the line x = 0:
- then y/z is a nonzero element in the residue field κ(P) = C, hence a cube

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• Hence y/z is a cube in K_P .

$$xz^{2}u^{3} + y^{2}zv^{3} + xy^{2}w^{3} + ft^{3} = 0, \ \alpha = (x/z, y/z).$$

P is not on the lines x = 0, y = 0, or z = 0.

x/z and y/z are units in the local ring of P, so that the image of α in K_P comes from the cohomology group H²_{ét}(Ô_{P²,P},ℤ/3).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$$xz^{2}u^{3} + y^{2}zv^{3} + xy^{2}w^{3} + ft^{3} = 0, \ \alpha = (x/z, y/z).$$

P is not on the lines x = 0, y = 0, or z = 0.

x/z and y/z are units in the local ring of P, so that the image of α in K_P comes from the cohomology group H²_{ét}(Ô_{P²,P},ℤ/3).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

*H*²_{ét}(*Ô*_{P²,P}, ℤ/3) = *H*²(κ(*P*), ℤ/3) = 0 by cohomological dimension.

Corollary

We obtained:

$$xz^{2}u^{3} + y^{2}zv^{3} + xy^{2}w^{3} + ft^{3} = 0 \subset \mathbb{P}^{2}_{[x:y:z]} \times \mathbb{P}^{3}_{[u:v:w:t]}$$

where

$$f = x^3 + y^3 + z^3 + 3x^2y + 3xy^2 + 3y^2z + 3yz^2 + 3xz^2 + 3x^2z$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

is a reference variety.

We obtained:

$$xz^{2}u^{3} + y^{2}zv^{3} + xy^{2}w^{3} + ft^{3} = 0 \subset \mathbb{P}^{2}_{[x:y:z]} \times \mathbb{P}^{3}_{[u:v:w:t]}$$

where

$$f = x^3 + y^3 + z^3 + 3x^2y + 3xy^2 + 3y^2z + 3yz^2 + 3xz^2 + 3x^2z$$

is a reference variety. Then:

Theorem (Krylov-Okada, Nicaise-Ottem)

Let k be an algebraically closed field of char $(k) \neq 3$. A very general hypersurface of bidegree (3,3) in $\mathbb{P}^2_k \times \mathbb{P}^3_k$ is not stably rational.

$$\pi: X \to S = \mathbb{P}^2_{\mathbb{C}}$$
 cubic surface bundle, $K = \mathbb{C}(x, y)$.

$$\begin{aligned} H^2_{nr,\pi}(\mathbb{C}(X)/\mathbb{C},\mathbb{Z}/3) &= \operatorname{Im}[H^2(K,\mathbb{Z}/3) \to H^2(K(X_K),\mathbb{Z}/3)] \bigcap \\ &\cap_{P \in S^{(1)} \cup S^{(2)}} \operatorname{Ker}[H^2(K) \to H^2(K_P) \to H^2(K_P(X_{K_P}))], \end{aligned}$$

$$\pi: X \to S = \mathbb{P}^2_{\mathbb{C}}$$
 cubic surface bundle, $K = \mathbb{C}(x, y)$.

$$\begin{aligned} H^2_{nr,\pi}(\mathbb{C}(X)/\mathbb{C},\mathbb{Z}/3) &= \operatorname{Im}[H^2(K,\mathbb{Z}/3) \to H^2(K(X_K),\mathbb{Z}/3)] \bigcap \\ &\cap_{P \in S^{(1)} \cup S^{(2)}} \operatorname{Ker}[H^2(K) \to H^2(K_P) \to H^2(K_P(X_{K_P}))], \end{aligned}$$

α ∈ H²(K) is determined by residues at P ∈ S of codimension
 1, by Bloch-Ogus:

$$0 \to H^{2}(K, \mathbb{Z}/3) \stackrel{\oplus \partial^{2}}{\to} \oplus_{P \in S^{(1)}} H^{1}(\kappa(P), \mathbb{Z}/3) \to$$
$$\stackrel{\oplus \partial^{1}}{\to} \oplus_{p \in S^{(2)}} H^{0}(\kappa(p), \mathbb{Z}/3)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• we need to specify which residues are allowed:

$$\pi: X \to S = \mathbb{P}^2_{\mathbb{C}}$$
 cubic surface bundle, $K = \mathbb{C}(x, y)$.

$$\begin{aligned} H^2_{nr,\pi}(\mathbb{C}(X)/\mathbb{C},\mathbb{Z}/3) &= \mathrm{Im}[H^2(K,\mathbb{Z}/3) \to H^2(K(X_K),\mathbb{Z}/3)] \bigcap \\ &\cap_{P \in S^{(1)} \cup S^{(2)}} \mathrm{Ker}[H^2(K) \to H^2(K_P) \to H^2(K_P(X_{K_P}))], \end{aligned}$$

α ∈ H²(K) is determined by residues at P ∈ S of codimension
 1, by Bloch-Ogus:

$$0 \to H^{2}(K, \mathbb{Z}/3) \stackrel{\oplus \partial^{2}}{\to} \oplus_{P \in S^{(1)}} H^{1}(\kappa(P), \mathbb{Z}/3) \to$$
$$\stackrel{\oplus \partial^{1}}{\to} \oplus_{p \in S^{(2)}} H^{0}(\kappa(p), \mathbb{Z}/3)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ● ●

• we need to specify which residues are allowed: X_{K_P} is birational to a SB surface \Rightarrow the fiber $X_P = \cup 3$ conjugated planes

$$\pi: X \to S = \mathbb{P}^2_{\mathbb{C}}$$
 cubic surface bundle, $K = \mathbb{C}(x, y)$.

$$\begin{aligned} H^2_{nr,\pi}(\mathbb{C}(X)/\mathbb{C},\mathbb{Z}/3) &= \mathrm{Im}[H^2(K,\mathbb{Z}/3) \to H^2(K(X_K),\mathbb{Z}/3)] \bigcap \\ &\cap_{P \in S^{(1)} \cup S^{(2)}} \mathrm{Ker}[H^2(K) \to H^2(K_P) \to H^2(K_P(X_{K_P}))], \end{aligned}$$

α ∈ H²(K) is determined by residues at P ∈ S of codimension
 1, by Bloch-Ogus:

$$0 \to H^{2}(K, \mathbb{Z}/3) \stackrel{\oplus \partial^{2}}{\to} \oplus_{P \in S^{(1)}} H^{1}(\kappa(P), \mathbb{Z}/3) \to$$
$$\stackrel{\oplus \partial^{1}}{\to} \oplus_{p \in S^{(2)}} H^{0}(\kappa(p), \mathbb{Z}/3)$$

we need to specify which residues are allowed:
 X_{K_P} is birational to a SB surface ⇒ the fiber
 X_P = ∪3 conjugated planes (condition appeared in a joint work with A. Auel and C. Böhning).

Set up: $\pi: X \to S = \mathbb{P}^2_{\mathbb{C}}$ cubic surface bundle, $K = \mathbb{C}(x, y)$. Assume:

- X_K is a smooth minimal cubic surface (so $H^2(K, \mathbb{Z}/3) \hookrightarrow H^2(K(X_K), \mathbb{Z}/3)$);
- fibres of π over codimension 1 points of S are reduced.

ション ふゆ く 山 マ チャット しょうくしゃ

Set up: $\pi: X \to S = \mathbb{P}^2_{\mathbb{C}}$ cubic surface bundle, $K = \mathbb{C}(x, y)$. Assume:

• X_K is a smooth minimal cubic surface (so $H^2(K, \mathbb{Z}/3) \hookrightarrow H^2(K(X_K), \mathbb{Z}/3)$);

• fibres of π over codimension 1 points of S are reduced. Determine:

- C = ∪ⁿ_{i=1}C_i ⊂ S a divisor corresponding to the set of codimension 1 points of S over which the fibre of π is geometrically a union of three planes permuted by Galois.
- γ_i ∈ κ(C_i)*/(κ(C_i)*)³ the class corresponding to the cyclic extension.

Assume C is snc.

Set up: $\pi: X \to S = \mathbb{P}^2_{\mathbb{C}}$ cubic surface bundle, $K = \mathbb{C}(x, y)$. Assume:

• X_K is a smooth minimal cubic surface (so $H^2(K, \mathbb{Z}/3) \hookrightarrow H^2(K(X_K), \mathbb{Z}/3)$);

• fibres of π over codimension 1 points of S are reduced. Determine:

- C = ∪ⁿ_{i=1}C_i ⊂ S a divisor corresponding to the set of codimension 1 points of S over which the fibre of π is geometrically a union of three planes permuted by Galois.
- γ_i ∈ κ(C_i)*/(κ(C_i)*)³ the class corresponding to the cyclic extension.

Assume *C* is snc. Then (briefly):

- $\alpha \in H^2_{nr,\pi}$ is only allowed to have residues γ_i at C_i + condition on K_P .
- glue by Bloch-Ogus.

Set up:
$$\pi: X \to S = \mathbb{P}^2_{\mathbb{C}}$$
, $C = \cup_{i=1}^n C_i$, $\gamma_i \in \kappa(C_i)^* / (\kappa(C_i)^*)^3$.

$$\begin{aligned} H^2_{nr,\pi}(\mathbb{C}(X)/\mathbb{C},\mathbb{Z}/3) &= \operatorname{Im}[H^2(K,\mathbb{Z}/3) \to H^2(K(X_K),\mathbb{Z}/3)] \bigcap \\ &\cap_{P \in S^{(1)} \cup S^{(2)}} \operatorname{Ker}[H^2(K) \to H^2(K_P) \to H^2(K_P(X_{K_P}))], \end{aligned}$$

Set up:
$$\pi:X o S=\mathbb{P}^2_{\mathbb{C}},\ C=\cup_{i=1}^n C_i,\ \gamma_i\in\kappa(C_i)^*/(\kappa(C_i)^*)^3.$$

$$\begin{aligned} H^2_{nr,\pi}(\mathbb{C}(X)/\mathbb{C},\mathbb{Z}/3) &= \operatorname{Im}[H^2(K,\mathbb{Z}/3) \to H^2(K(X_K),\mathbb{Z}/3)] \bigcap \\ &\cap_{P \in S^{(1)} \cup S^{(2)}} \operatorname{Ker}[H^2(K) \to H^2(K_P) \to H^2(K_P(X_{K_P}))], \end{aligned}$$

Then

$$H^2_{nr,\pi}(\mathbb{C}(X)/\mathbb{C},\mathbb{Z}/3) = \{\underline{a} = \{a_i\}_{i=1}^n, a_i \in \{-1,0,1\}\} \subset (\mathbb{Z}/3)^n$$

(i)
$$a_i \neq 0 \Rightarrow X_{K_{C_i}}$$
 is birational to SB;
(ii) (Bloch-Ogus)

$$\sum_{i=1}^{n} \sum_{P \in S^{(2)}} \partial_P(\gamma_i^{\mathbf{a}_i}) = 0$$

(iii) if $P \in C_i \cap C_j$ and if $\partial_P(\gamma_i^{a_i}) = -\partial_P(\gamma_j^{a_j}) \neq 0$, one has that the base change X_{K_P} is birational to SB.

THANK YOU!!!

◆□> <圖> < E> < E> E のQ@