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Summary/plan

@ General question of interest: determine which smooth
projective varieties X are rational: is X birational to P7? (or
stably rational, or retract rational...)

@ Methods:

e X is rational: come up with a geometric construction;
e X is not rational:
o find invariants of X;
e find invariants of a (maybe singular) specialization X, of X.
© this motivates: what is the available pool of X; with
invariants?
@ goal: add to the pool Xy — IP% with fibers cubic surfaces:
e invariants: use Galois cohomology and geometry of cubics;
e example:
X :x22u3 + y?2v3 + xy?wl + 3 =0 C P? x P3

[x:y:2Z] [uzviw:t]

f=x3+y3+ 2% 4+3x%y +3xy? +3y?z + 3yz? + 3xz° + 3x°z.
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e X is unirational: there is a dominant rational map P} --» X;



Properties of rationality

k a field, X/k projective integral variety
e X is rational: X is birational to P} < k(X)/k is a purely
transcendental extension;
e X is stably rational: X x P is rational, for some m;

e X is unirational: there is a dominant rational map P} --» X;

We have implications .

All notions are equivalent for X /C smooth, of dimension 1
(X ~PL) or 2 (birational class of P2).

Next: typical examples and counterexamples.
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Rationality proofs

Notation:

Xg CPL: f(x0,...xn) = 0,deg f = d a smooth hypersurface.

@ smooth quadrics Xy with Xa(k) # () are rational:

Rational parametrization:
nontangent lines through A <> second intersection point with
the quadric.
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Irrationality proofs over C: classical

Classical methods:
@ compute some invariant i(X);
e i(X)# 0= X is not rational.
Examples of not rational smooth threefolds:
© X3 C P{ (Clemens-Griffiths, using intermediate Jacobian);
@ X, C P{ (Iskovskikh-Manin, using rigidity);

© Z a resolution of
Y :zg — fa(x0, %1, x2,%3) = 0

a double cover of P2 ramified along some quartic
(Artin-Mumford, H3(Z,Z)ors = Br Z # 0).
These varieties provide examples of unirational not rational complex
threefolds.
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Irrationality proofs over C: specialization

(Beauville, Voisin, Colliot-Théleéne—Pirutka, Totaro, Schreieder):
@ consider a family of varieties:

X <—— Xog <— reference variety

|

B<——0
@ compute a suitable invariant i(Xp);
@ i(Xo) # 0 + EPSILON = a very general X = X}, is not
(stably) rational;
e (in some cases, all previously computable i(X) vanish);
e X} very general: b ¢ U;enB;i(C), B; C B closed.
e EPSILON:

e restriction on singularities of Xp;
o "restriction to subvarieties" for i (Schreieder).
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X not stably rational by specialization

Q@ dimX,; = 3: (Colliot-Théléne—Pirutka), d = 4;

@ dimX,; = 4: (Totaro) d = 4, (Kollar) d = 5;

© dimX,; = 5; (Nicaise-Ottem) d = 4, (Schreieder) d = 5,
(Kollar) d = 6;

Q (Schreieder) Xy C P"+1 with

d > logon+ 2,
this generalizes previous bounds by Kollar, and Totaro, of order
d~>2/3n.
Other examples:
@ cyclic covers,

@ complete intersections,

@ hypersurfaces in P™ x P", and more.



Available reference varieties Xg

@ Xo : a conic of quadric surface bundle over P?,
i = Br(X})[2] = H2 (X0, 2/2) © H3(C(Xo),Z,/2)

here Xj — Xo is a resolution of singularities.
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Available reference varieties Xg

@ Xo : a conic of quadric surface bundle over P?,
i = Br(X})[2] = H2 (X0, 2/2) © H3(C(Xo),Z,/2)

here Xj — Xo is a resolution of singularities.
e Xp : cyclic cover of P7, i = HO(X3, Q™)

@ more generally, Xp : a quadric bundle over P,

i = HT(Xo) € H™(C(Xo)):

e Xp : a fibration over P in Fermat-Pfister forms, i = HJJ(Xo).
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H'(K,7Z/2) and residues

Assume: K D .
Q@ o HYK,Z/n)~Z/n;
o HY(K,Z/n) ~ K*/K*" (Kummer),
for a € K*, we will still denote by a its class in HY(K,Z/n).
o Br(K)[n] = H*(K,Z/n) (Kummer);
symbols: (a, b) := aUb € H*(K,Z/n),a, b € K*.
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H'(K,7Z/2) and residues

Assume: K D .

H(K,Z/n) ~ Z/n;

o HY(K,Z/n) ~ K*/K*" (Kummer),

for a € K*, we will still denote by a its class in HY(K,Z/n).
Br(K)[n] = H*(K,Z/n) (Kummer);

symbols: (a,b) :=aUb € H*(K,Z/n),a, b € K*.

v: K = Z U oo a discrete valuation of rank 1:

Recall: v(x) =c0o < x=0

vixy) = v(x) + v(y)

v(x +y) = min(v(x), v(y))

o A be the valuation ring: A = {x, v(x) > 0},
o k(v) the residue field: x(v) = A/m,

m = {x,v(x) >0} = (wa), ma is a uniformizer

o this gives 9! : H(K,Z/n) — H'=Y(k(v),Z/n).
o 0! factors through the completion H'(K,,Z/n)
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Formulas for residus

a,be HYK,Z/n) ~ K*/K*"
@ 0.(a) = v(a) mod n € H%k(v),Z/n) ~ Z/n,

o
Chi

0%(a, b) = (-1)

T
bV
Q@ In partlcular, 02(a, b) = 0 if v(a) = v(b) = 0.

where 2

is the image of the unit bv(z in k(v)*/K(v)*".



e S=P2, K=C(x,y), a=(x,y) € H(K,Z/2);

@ vp : K* — Z is the order of vanishing at D = {x = 0};
o recall: 92(a, b) = (—1)"(@)v(b)

o then 92 (o) = 02, (x,y) =

v(b)
pv(a)’




o S=P% K=C(x,y), a=(x,y) € H}(K,Z/2);

@ vp : K* — Z is the order of vanishing at D = {x = 0};
o recall: 92(a, b) = (—1)v(2)v(b)2
o then 97 (o) = 97, (x,y) =y € C(y)*/C(y)*.

v(b) |
v(a)
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e X/k an integral variety, then
Har(X) = Ha (k(X)/K) = Ny Kerd]
where the intersection is over all discrete valuations v on k(X)
(of rank one), trivial on the field k.
@ One has
H2(K) — Har(k(X)/k)
(recall: if v(a) = v(b) =0, then J(a, b) = 0.

e Birational invariant by definition (Saltman, Bogomolov,
Colliot-Théléne-Ojanguren).

o X/k is a stably rational, then H'(k) ~ H! (k(X)/k).

@ Advantage: No need to compute a smooth model of X



e X/k an integral variety, then
Ha (X) = Hy (k(X)/k) = N Kerd;

where the intersection is over all discrete valuations v on k(X)
(of rank one), trivial on the field k.

@ One has
H2(K) — Har(k(X)/k)
(recall: if v(a) = v(b) =0, then J(a, b) = 0.

e Birational invariant by definition (Saltman, Bogomolov,
Colliot-Théléne-Ojanguren).

o X/k is a stably rational, then H'(k) ~ H! (k(X)/k).
@ Advantage: No need to compute a smooth model of X
e Fact: if X is smooth and projective, H2,(X,Z/n) ~ Br(X)[n].
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Strategy for fibrations (Colliot-Théléne - Ojanguren)

@ Set up:
Xk X fibration in geometrically rational varieties
K——§5= IP%

where K = C(x, y) is the field of functions of S,
note: K(Xk) = C(X).

o H(C(X)/C)—= Hj(K(Xk)/K)— H*(C(X))
H2(K)
e a € H?(K) is ramified on S as H2,(C(S)/C) = H?(C) = 0.



Strategy for fibrations (Colliot-Théléne - Ojanguren)

@ Set up:
Xk X fibration in geometrically rational varieties
K——§5= IP%

where K = C(x, y) is the field of functions of S,
note: K(Xk) = C(X).

o H(C(X)/C)——= Hi(K(Xk)/K)— H*(C(X))
H*(K)

e a € H?(K) is ramified on S as H2,(C(S)/C) = H?(C) = 0.

o idea: if 02 () # 0, then 7 degenerates along D.



Relative unramified cohomology H;, .(k(X)/k) C H'(k(X))

Set up: Xk, Xk X integral
K K S/k smooth, k alg.closed

here K(Xk) = k(X).



Relative unramified cohomology H;, .(k(X)/k) C H'(k(X))

Set up: Xk, Xk X integral
K K S/k smooth, k alg.closed

here K(Xk) = k(X).

Definition

Hie x(K(X)/k) = Tm[H'(K) = H'(K(Xi)][ )
Np Ker[H'(K) — H'(Kp) — H'(Kp(Xk,))],

where

@ P runs over all scheme points of S of positive codimension:
P e S0 fori >0

@ Kp is the field of fractions of the completed local ring 557,:.



o Hy, »(k(X)/k) C Hp (k(X)/k).

nr,m



o Hy, »(k(X)/k) C Hp (k(X)/k).

o if « € H}, (k(X)/k) nonzero, then X is a reference variety

(Schreieder).



Cubic surface bundles



Computing H?

nr,m

Harx(K(X)/k) = Im[H*(K) — H*(K(Xi))][ )
Np Ker[H?(K) — H?(Kp) — H?(Kp(Xk,))]-

Let Y = Xk.



Computing H?

nr,m

H, #(K(X)/k) = Im[H*(K) = H*(K(Xx)I[)
Np Ker[H?(K) — H?(Kp) — H?(Kp(Xk,))]-
Let Y = Xk.
Question: when H?(F) — H2(F(Y)) is:
@ injective (F = K)
@ not injective, and what is the kernel (F = Kp)?



Computing H?

nr,m

Harx(K(X)/k) = Im[H*(K) — H*(K(Xi))][ )
Np Ker[H?(K) — H?(Kp) — H?(Kp(Xk,))]-

Let Y = Xk.
Question: when H?(F) — H2(F(Y)) is:

@ injective (F = K)

@ not injective, and what is the kernel (F = Kp)?
Known answers for:

@ Y a quadric (Arason, Pfister, Kahn-Rost-Sujatha)

@ Y a geometrically rational surface (Colliot-Théléne - Karpenko
- Merkurjev).



Rational surfaces and kernels for H?(-,7Z/3)

(Colliot-Théléne - Karpenko - Merkurjev)
F a field, Y/F geometrically rational surface. Then

o Ker[H?(F,Z/3) — H?*(F(Y),Z/3)] # 0 iff

e Y is F-birational to Y’ a non-split Severi-Brauer (SB) surface.



Rational surfaces and kernels for H?(-,7Z/3)

(Colliot-Théléne - Karpenko - Merkurjev)
F a field, Y/F geometrically rational surface. Then

o Ker[H?(F,Z/3) — H?*(F(Y),Z/3)] # 0 iff

e Y is F-birational to Y’ a non-split Severi-Brauer (SB) surface.
Then

Ker[H?(F,Z/3) — H*(F(Y),Z/3)] ~ Z/3,

generated by the class of Y’.



Example: minimal cubic

Y:al+ b3 +abwd +/3=0, a,b,feF

@ Assume: none of the elements a, b, ab, f, af, bf is a cube in F.

® (Segre) then the surface is minimal, and
H?(F,Z/3Z) — H*(F(Y),Z/37Z)

is injective.
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Y:ial+ b3 +abw®+t3=0,a,beF
then (a, b) € Ker[H?(F,Z/3) — H?(F(Y),Z/3)]:
e if ais a cube in F(Y), then (a,b) = 0.
o Otherwise, let L = F(Y)(/a). In F(Y) we have a relation
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so
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where
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Example: nonminimal cubic

Y:ial+ b3 +abw®+t3=0,a,beF
then (a, b) € Ker[H?(F,Z/3) — H?(F(Y),Z/3)]:
e if ais a cube in F(Y), then (a,b) = 0.
@ Otherwise, let L = F(Y)(+/a). In F(Y) we have a relation
3+ au®
V3t awd’

so
b= Ni/rv)(B)

t+ /au
v+ Jaw’

where
8=
e Hence in H2(F(Y),Z/3Z):
(a,b) = (a, N yr(vy(B)) = Nijr(vy(a, B) = 0.



Example

o k=C
(or k an algebraically closed field of char (k) # 3)

o X C P? x P3

by2] X Pluvoweg 18 @ cubic surface bundle over k:

xz2ud + y22v3 + xy?wd + 3 = 0,
where

f=x34y3+ 22 +3x%y + 3xy? + 3y%z + 3yz°> + 3xz% + 3x°z,



o k=C
(or k an algebraically closed field of char (k) # 3)

o X C P? x P3

by2] X Pluvoweg 18 @ cubic surface bundle over k:
xz2ud + y22v3 + xy?wd + 3 = 0,

where

f=x34y3+ 22 +3x%y + 3xy? + 3y%z + 3yz°> + 3xz% + 3x°z,

o Let K = C(P?) = C(x/z,y/z), let
a=(x/z,y/z) € H*(K,Z/3). Then
o€ H?

nr,m

(C(X)/C,2/3).



Sketch of proof: a nonzero in C(X) = K(Xk)

the generic fibre Y = Xi of 7 is a minimal cubic surface:
x22ud + y?2v3 + xy?wd + 3 = 0,

where
f=x34y3+ 2%+ 3x%y +3xy? + 3y?z + 3yz® + 3xz° + 3x°z.



Sketch of proof: a nonzero in C(X) = K(Xk)

the generic fibre Y = Xi of 7 is a minimal cubic surface:
x22ud + y?2v3 + xy?wd + 3 = 0,

where
f=x34y3+ 2%+ 3x%y +3xy? + 3y?z + 3yz® + 3xz° + 3x°z.

Recall:
aud +bvd 4+ abwd + 2 =0, a,b,f € K

if none of the elements a, b, ab, f, af, bf is a cube then
H?(K,7Z/3) — H?(K(Y),Z/3) is injective.



Sketch of proof: ramification of «

xz%u3 +y2zv3 + Xy2W3 + 3 = 0, a=(x/z,y/2).
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Sketch of proof: ramification of «

xz%u3 +y2zv3 + Xy2W3 + 3 = 0, a=(x/z,y/2).

Question: For which divisors D C P2 one has dp(a) # 07

Answer: x =0o0ory=0o0r z=0.



Sketch of proof: «a zero in Kp(Y')

xz°u® +y22v3 + xy2W3 + =0, a= (x/z,y/2).



Sketch of proof: «a zero in Kp(Y')

X2 + y?2® + xy?wd 4+ 2 =0, a = (x/z,y/2).
Let P € P2 be a point of positive codimension. We have three
cases:
@ P is the generic point of one of three lines x =0, y =0, or
z =0, or an intersection point of two of these lines.

@ P is a closed point lying on only one of the lines x =0, y =0,
orz=0.

© All other cases.



Blackboard




Sketch of proof: «a zero in Kp(Y), case 1

xz2u8 + y?zv3 + xy?wd + 3 = 0, a = (x/z,y/z), where
f=x3+y3+ 234 3x%y + 3xy? + 3y%z + 3yz® + 3xz% + 3x%z.

P is the generic point of one of three lines x =0, y =0, or z =0,
or an intersection point of two of these lines.
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or an intersection point of two of these lines.
Then

e f is a nonzero cube in k(P), so that f is a cube in Kp (Hensel)



Sketch of proof: «a zero in Kp(Y), case 1

xz2u8 + y?zv3 + xy?wd + 3 = 0, a = (x/z,y/z), where
f=x3+y3+ 234 3x%y + 3xy? + 3y%z + 3yz® + 3xz% + 3x%z.

P is the generic point of one of three lines x =0, y =0, or z =0,
or an intersection point of two of these lines.

Then
e f is a nonzero cube in k(P), so that f is a cube in Kp (Hensel)
o YKP is
2 2
X3 +y v +fy—w +83=0

z

so that the element (x/z,y?/z%) = 2a is in the kernel of the
map
H?(Kp,7./3) — H*(Kp(Y),Z/3Z).



Sketch of proof: «a zero in Kp(Y), case 2

xz?u3 +y22V3 + xy2w3 +f2=0,a= (x/z,y/2).

P is a closed point lying on only one of the lines x =0, y =0, or
z=0.



Sketch of proof: «a zero in Kp(Y), case 2

xz?u3 +y22V3 + xy2w3 +f2=0,a= (x/z,y/2).

P is a closed point lying on only one of the lines x =0, y =0, or
z=0.

@ enough: o = 0 over Kp.



Sketch of proof: «a zero in Kp(Y), case 2

x22 P 4 y?2v3 + xy?w? + i3 =0, a = (x/z,y/2).
P is a closed point lying on only one of the lines x =0, y =0, or
z=0.
@ enough: o = 0 over Kp.
@ assume: P is on the line x = 0:

@ then y/z is a nonzero element in the residue field x(P) = C,
hence a cube

@ Hence y/z is a cube in Kp.



Sketch of proof: «a zero in Kp(Y), case 3

x2?P + y?2 + xy?wd 4+ 3 =0, a = (x/z,y/2).
P is not on the lines x =0, y =0, or z=0.

@ x/z and y/z are units in the local ring of P, so that the image
of a in Kp comes from the cohomology group
H2,(Op2 p, Z./3).



Sketch of proof: «a zero in Kp(Y), case 3

x2?P + y?2 + xy?wd 4+ 3 =0, a = (x/z,y/2).
P is not on the lines x =0, y =0, or z=0.

@ x/z and y/z are units in the local ring of P, so that the image

of a in Kp comes from the cohomology group
H2,(Op2 p, Z./3).

o H2,(Op2 p, Z/3) = H*(k(P),7Z/3) = 0 by cohomological
dimension.



Corollary

We obtained:

x223 + 22+ xPwi+ 2=0C IP’[2X:y:Z] X Pf’u:v:w:t]
where
f=x3+y3+ 234+ 3x%y 4+ 3xy% + 3y%z + 3yz% 4+ 3xz> + 3x°z

is a reference variety.



Corollary

We obtained:
x223 + 22+ xPwi+ 2=0C IP’[2X:y:Z] X Pf’u:v:w:t]
where

f=x3+y3+ 234+ 3x%y 4+ 3xy% + 3y%z + 3yz% 4+ 3xz> + 3x°z

is a reference variety.
Then:

Theorem (Krylov-Okada, Nicaise-Ottem)

Let k be an algebraically closed field of char (k) # 3. A very general
hypersurface of bidegree (3,3) in P x P} is not stably rational.




General formula

7: X — S = P2 cubic surface bundle, K = C(x, y).

Ha (C(X)/C,Z/3) = Im[H*(K, Z/3) — H*(K(Xk),Z/3)] ()
Npesmus@ Ker[H(K) = H*(Kp) = H*(Kp(Xk;,))],



General formula

7: X — S = P2 cubic surface bundle, K = C(x, y).

HZ, +(C(X)/C, Z/3) = Im[H*(K, Z/3) = H*(K(Xk),Z/3)]( )
Npeswuse Ker[H*(K) = HA(Kp) = H*(Kp(Xk;))],

o a € H?(K) is determined by residues at P € S of codimension

1, by Bloch-Ogus:

2
0 — H*(K,Z/3) %% ®peswy H ((P), Z/3) —
@t 0
— @pES(Z)H (k(p),Z/3)

@ we need to specify which residues are allowed:



General formula

7: X — S = P2 cubic surface bundle, K = C(x, y).

HZ, +(C(X)/C, Z/3) = Im[H*(K, Z/3) = H*(K(Xk),Z/3)]( )
Npeswuse Ker[H*(K) = HA(Kp) = H*(Kp(Xk;))],

o a € H?(K) is determined by residues at P € S of codimension
1, by Bloch-Ogus:
2 ey 1
0— HYK,Z/3) = ©pesyH (k(P),Z/3) —
@t 0
= ®pes@H (k(p),Z/3)

@ we need to specify which residues are allowed:
Xk, is birational to a SB surface = the fiber
Xp = U3 conjugated planes



General formula

7: X — S = P2 cubic surface bundle, K = C(x, y).

HZ, +(C(X)/C, Z/3) = Im[H*(K, Z/3) = H*(K(Xk),Z/3)]( )
Npeswuse Ker[H*(K) = HA(Kp) = H*(Kp(Xk;))],

o a € H?(K) is determined by residues at P € S of codimension
1, by Bloch-Ogus:

2
0 — H*(K,Z/3) %% ®peswy H ((P), Z/3) —
@t 0
— @pES(Z)H (k(p),Z/3)

@ we need to specify which residues are allowed:

Xk, is birational to a SB surface = the fiber

Xp = U3 conjugated planes (condition appeared in a joint
work with A. Auel and C. Bdhning).



General formula

Set up: m: X — S = P2 cubic surface bundle, K = C(x, y).
Assume:
@ Xk is a smooth minimal cubic surface
(so H3(K,Z/3) — H?*(K(Xk),Z/3));
o fibres of 7 over codimension 1 points of S are reduced.



General formula

Set up: m: X — S = P2 cubic surface bundle, K = C(x, y).
Assume:

@ Xk is a smooth minimal cubic surface
(so H3(K,Z/3) — H?*(K(Xk),Z/3));

o fibres of 7 over codimension 1 points of S are reduced.

Determine:

o C=U",C C S adivisor corresponding to the set of
codimension 1 points of S over which the fibre of 7 is
geometrically a union of three planes permuted by Galois.

o ;i € k(GC)*/(k(C;)*)? the class corresponding to the cyclic
extension.

Assume C is snc.



General formula

Set up: m: X — S = P2 cubic surface bundle, K = C(x, y).
Assume:
@ Xk is a smooth minimal cubic surface
(so H3(K,Z/3) — H?*(K(Xk),Z/3));
o fibres of 7 over codimension 1 points of S are reduced.

Determine:

o C=U",C C S adivisor corresponding to the set of
codimension 1 points of S over which the fibre of 7 is
geometrically a union of three planes permuted by Galois.

o ;i € k(GC)*/(k(C;)*)? the class corresponding to the cyclic
extension.

Assume C is snc. Then (briefly):

e o €E Hr%r,w is only allowed to have residues 7; at C; + condition
on Kp.

@ glue by Bloch-Ogus.



General formula

Setup: m: X = S=P2, C=U",G, v € s(C)*/(k(C)*)3.

H, (C(X)/C, Z/3) = Im[H*(K, Z,/3) = H*(K(Xx), Z/3)][ )
Npestwuse Ker[H*(K) — H(Kp) = H*(Kp(Xi; )],



General formula

Setup: m: X = S=P2, C=U",G, v € s(C)*/(k(C)*)3.
Hz - (C(X)/C, Z/3) = Tm[H*(K, Z,/3) — H*(K(Xk), Z/3)][ )
Npeswus Ker[H?(K) = HA(Kp) = H*(Kp(Xk,))],
Then

Har x(C(X)/C,Z/3) = {a = {ai}]_y, 2 € {~1,0,1}} C (Z/3)"

(i) ai # 0= Xk, is birational to SB;

(ii) (Bloch-Ogus)
> Y ol

i=1 pes()

(i) if Pe GGN G and if 9p(v") = —8P("}/j ') # 0, one has that
the base change Xkp is birational to SB.



THANK YOU!!l



